

SiFive U54-MC Coreplex: Multicore, 64-bit Application • Processor class RISC-V CPU

Jack Kang
VP of Product

RISC-V is a high-quality, license-free, royalty-free ISA

- 5th Generation RISC design from UC Berkeley
- A high-quality, license-free, royalty-free RISC ISA specification
- Standard maintained by non-profit RISC-V Foundation
- Multiple proprietary and open-source core implementations
- Supported by growing software ecosystem
 - binutils/gcc/FreeBSD mainlined, Linux/glibc submitted to upstream
- Appropriate for all levels of computing system, from microcontrollers to supercomputers

DRAPER bluespec

Microsoft NP SKY

RISC-V Foundation: 65+ Members

FCA LOCK

EMBECOSM

How can RISC-V cover all levels of computing?

Embedded Markets are different from high-performance, application processors

- RISC-V is designed to be modular
 - Base ISA, with standard extensions
 - Custom, "Non-Standard" extensions allowed
- RISC-V is designed to support 32-bit, 64-bit, and 128-bit architectures
- RISC-V provides multiple operating modes (User, Supervisor, Machine)

Modular, but standard, Extensions

- Extensions add instructions
- "I" for Integer
 - The only required Extension in a RISC-V implementation
- RISC-V allows for custom, "Non-Standard", extensions in an implementation
- Putting it all together (examples)
 - RV32I The most basic RISC-V implementation
 - RV32IMAC Integer + Multiply + Atomic + Compressed
 - RV64GC 64bit IMAFDC
 - RV64GCXext IMAFDC + a non-standard extension
- Binaries that target RV32I can run on any RISC-V system, regardless of extensions

Extension	Description		
1	Integer		
M	Integer Multiplication and Division		
А	Atomics		
F	Single-Precision Floating Point		
D	Double-Precision Floating Point		
G	General Purpose = IMAFD		
С	16-bit Compressed Instructions		
Non-Standard User-Level Extensions			
Xext	Non-standard extension "ext"		

Common RISC-V Standard Extensions
*Not a complete list

RISC-V Modes

- RISC-V Privileged Specification defines 3 levels of privilege, called Modes
- Machine mode is the highest privileged mode and the only required mode
 - Allows for a range of targeted implementations
- Machine and Supervisor modes each have Control and Status Registers (CSRs)

RISC-V Modes			
Level	Name	Abbr.	
0	User/Application	U	
1	Supervisor	S	
	Reserved		
3	Machine	M	

Supported Combinations of Modes			
Supported Levels	Modes		
1	M		
2	M, U		
3	M, S, U		

How to measure ISA quality?

Static code bytes for program

Dynamic code bytes fetched for execution

Microarchitectural work generated for execution

SPECint2006 compressed code size with save/restore optimization (relative to "standard" RVC)

- RISC-V now smallest ISA for 32- and 64-bit addresses
- All results with same GCC compiler and options

(÷

Dynamic Bytes Fetched

• RV64GC is lowest overall in dynamic bytes fetched

(=

(5)

• RV64GC is lowest overall in dynamic bytes fetched

(=

Converting Instructions to Microops

Microops are measure of microarchitectural work performed

Multiple microinstructions from one macroinstructions

Or one microinstruction from multiple macroinstructions

RISC-V Microarchitectural work generated is less than other architectures

(=

ISA quality -- summary

- Static code bytes for program
 - RISC-V is less

- Dynamic code bytes fetched for execution
 - RISC-V is less

- Microarchitectural work generated for execution
 - RISC-V is less

Ok, but where are the implementations?

• The ISA might have benefits, but microarchitecture implementations are still very important.

 Up to now, most RISC-V implementations have only been targeted for Embedded Devices, even though the ISA is designed for more complex systems as well

Introducing SiFive U54-MC Coreplex

- Features 4x U54 Cores and 1x E51 Core
- Each U54 core is a 64-bit, 1.5 GHz CPU
- U54 implements RV64GC
 - Hardware multiply/divide
 - Atomic Instructions
 - 16-bit compressed instructions
 - Single and Double Precision Floating Point with Fused Multiply Add
- U54 supports RISC-V privileged modes M, S, and U
- E51 Core is a 64-bit, 1.5GHz CPU "minion core"
 - RV64IMAC
 - RISC-V privileged modes M and U only
- Coherent, 2MB 16-way L2 subsystem
- Standard platform for Linux RISC-V development

SiFive U54 Core Pipeline Diagram

IF ID

EX

MEM

WB

- Advanced Branch Prediction
 - 30-entry BTB
 - 256-entry BHT
- MMU Support
 - 32-entry fully associative ITLB and DTLB (each)
 - 128-entry direct-mapped unified L2 TLB

- High performance memory subsystem
 - 32KB 8-way Instruction Cache
 - 32KB 8-way Data Cache
 - 2MB 16-way shared L2 Cache
 - Supports Latest RISC-V specifications

U54 Specifications

Speed:

- TSMC 28nm HPC:
 - Typical: 1.5 GHz, 0.9V, 25C
 - Fast/Fast: 2.6 GHz, 0.99V, 125C
 - Slow/Slow: 960 MHz, 0.81V, -40C
- Standard cell, 12-track library
- Area:
 - Single U54 Core-only Area: 0.234 mm²
 - Single U54 Coreplex Area: 0.538 mm²
 - Includes 32KB/32KB L1 Cache
- Performance:
 - 1.7 DMIPS/MHz
 - 2.75 CoreMark/MHz

RISC-V Software Update

- Binutils is stable & mainlined as of 2.28 release (March 2017)
- GCC stable & mainlined as of 7.1 release (May 2017)
- LLVM in process of being submitted upstream
- Linux is in process of being submitted upstream
 - glibc targeting next release in Feb 2018
- newlib upstreamed and will be released in 2.6.0 (Dec 2017)

Robust Ecosystem developing for RISC-V tools

Free, Open-Source Tools

Freedom Studio is the fastest way to get started programming your SiFive hardware. Freedom Studio is built on top of the popular Eclipse IDE and packaged with a prebuilt toolchain and example projects from the Freedom E SDK. Freedom Studio is compatible with all SiFive products including the HiFive1, the Freedom E300 Arty FPGA Dev Kit, and more.

Freedom Studio v20170616 (beta2)

- Windows •
- macOS ⊕
- Linux ⊕

FREEDOM STUDIO MANUAL

Announced Commercial Debug and Tools

UltraSoC

At-a-glance

- Run control: halt, run, single step, break point
 - Processor trace
 - JTAG and cJTAG
 - "Bare metal" USB
- · Other connectivity options
 - Standards compliant
- IDE support: Eclipse / GDB, 3rd party solutions as they emerge
 - · Non-intrusive, wire-speed
 - Reduces post-silicon bring-up and debug burden

Segger

J-Link Probe Support

Freedom U500 Base Platform Block Diagram

TSMC 28nm Chip for Rapid Customization of the Freedom Unleashed Platform

Freedom U500 Base Platform Chip

~30mm² in TSMC 28nm

- 250M transistors
- 1.5 GHz+ SiFive E51/U54 CPU
 - 1x E51: 16KB L1I\$ and 8KB DTIM
 - 4x U54: 32KB L1I\$ and 32KB L1D\$
 - ECC support
- Banked 2MB L2\$
 - ECC support
- TSMC 28HPC
- FCBGA package
- Development board available in Q1 2018

Summary

- RISC-V ISA is designed for all computing devices
- RISC-V ISA has many benefits, but microarchitectural implementations still matter
- U54-MC is a advanced, multicore system, with Virtual Memory Support and M+S+U privileged mode, enabling Linux and other advanced Operating System
- Development board with Freedom U500 available Q1 2018
- Lead Customers already licensed U54-MC Coreplex
- U54-MC Coreplex available as Soft IP for evaluation now

