
SiFive FU540-C000 Manual

v1p0

© SiFive, Inc.

SiFive FU540-C000 Manual

Proprietary Notice

Copyright © 2018, SiFive Inc. All rights reserved.

Information in this document is provided “as is,” with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

v1p0 April 06, 2018 • Initial release

Contents

1 Introduction .. 9

1.1 FU540-C000 Overview ..9

1.2 E51 RISC‑V Monitor Core..11

1.3 U54 RISC‑V Application Cores...11

1.4 Interrupts ... 12

1.5 On-Chip Memory System...12

1.6 Universal Asynchronous Receiver/Transmitter ...12

1.7 Pulse Width Modulation ...12

1.8 I²C ... 12

1.9 Hardware Serial Peripheral Interface (SPI) ..13

1.10 GPIO Peripheral ...13

1.11 Gigabit Ethernet MAC..13

1.12 DDR Memory Subsystem...13

1.13 Debug Support ...13

2 List of Abbreviations and Terms ...14

3 E51 RISC-V Core ..15

3.1 Instruction Memory System..15

3.1.1 I-Cache Reconfigurability ..16

3.2 Instruction Fetch Unit ..16

3.3 Execution Pipeline ..16

3.4 Data Memory System ..17

3.5 Atomic Memory Operations..17

3.6 Supported Modes ...18

3.7 Physical Memory Protection (PMP)...18

3.7.1 Functional Description ..18

3.7.2 Region Locking ..18

3.8 Hardware Performance Monitor..19

1

3.9 ECC .. 20

3.9.1 Single Bit Errors ...20

4 U54 RISC-V Core ..21

4.1 Instruction Memory System..21

4.1.1 I-Cache Reconfigurability ..22

4.2 Instruction Fetch Unit ..22

4.3 Execution Pipeline ..23

4.4 Data Memory System ..23

4.5 Atomic Memory Operations..23

4.6 Floating-Point Unit (FPU)...24

4.7 Virtual Memory Support ...24

4.8 Supported Modes ...24

4.9 Physical Memory Protection (PMP)...25

4.9.1 Functional Description ..25

4.9.2 Region Locking ..25

4.10 Hardware Performance Monitor ..25

4.11 ECC... 28

4.11.1 Single Bit Errors ...28

5 Memory Map ...29

6 Boot Process..32

6.1 Reset Vector... 34

6.2 Zeroth Stage Boot Loader (ZSBL) ..34

6.3 First Stage Boot Loader (FSBL) ...35

6.4 Berkeley Boot Loader (BBL)...36

6.5 Boot Methods ...36

6.5.1 Flash Bit-Banged x1 ...36

6.5.2 Flash Memory-Mapped x1...37

6.5.3 Flash Memory-Mapped x4...37

6.5.4 SD Card Bit-Banged x1...37

2

7 Clocking and Reset...38

7.1 Clocking... 39

7.2 Reset... 39

7.3 Memory Map (0x1000_0000–0x1000_0FFF) ..39

7.4 Reset and Clock Initialization ...42

7.4.1 Power-On ..42

7.4.2 Setting coreclk frequency...42

7.4.3 DDR and Ethernet Subsystem Clocking and Reset..43

8 Interrupts.. 44

8.1 Interrupt Concepts ..44

8.2 Interrupt Entry and Exit ..45

8.3 Interrupt Control Status Registers...46

8.3.1 Machine Status Register (mstatus) ..46

8.3.2 Machine Interrupt Enable Register (mie) ..47

8.3.3 Machine Interrupt Pending (mip) ...47

8.3.4 Machine Cause Register (mcause) ..48

8.3.5 Machine Trap Vector (mtvec)..49

8.4 Supervisor Mode Interrupts ..50

8.4.1 Delegation Registers (m*deleg) ...51

8.4.2 Supervisor Status Register (sstatus) ...52

8.4.3 Supervisor Interrupt Enable Register (sie)...53

8.4.4 Supervisor Interrupt Pending (sip) ..53

8.4.5 Supervisor Cause Register (scause)...54

8.4.6 Supervisor Trap Vector (stvec) ..55

8.4.7 Delegated Interrupt Handling ...56

8.5 Interrupt Priorities ...57

8.6 Interrupt Latency...57

9 Core Local Interruptor (CLINT) ...58

9.1 CLINT Memory Map ..58

9.2 MSIP Registers...59

3

9.3 Timer Registers ..59

9.4 Supervisor Mode Delegation ..59

10 Platform-Level Interrupt Controller (PLIC) ...60

10.1 Memory Map ..60

10.2 Interrupt Sources ..64

10.3 Interrupt Priorities..64

10.4 Interrupt Pending Bits ..65

10.5 Interrupt Enables...66

10.6 Priority Thresholds ..66

10.7 Interrupt Claim Process ...67

10.8 Interrupt Completion..67

11 Level 2 Cache Controller ...69

11.1 Level 2 Cache Controller Overview ...69

11.2 Functional Description ...69

11.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)70

11.2.2 Way Masking and Locking...71

11.2.3 L2 Scratchpad..71

11.2.4 Error Correcting Codes (ECC) ...72

11.3 Memory Map ..72

11.4 Register Descriptions ..74

11.4.1 Cache Configuration Register (Config) ...74

11.4.2 Way Enable Register (WayEnable) ...74

11.4.3 ECC Error Injection Register (ECCInjectError) ...74

11.4.4 ECC Directory Fix Address (DirECCFix*) ...75

11.4.5 ECC Directory Fix Count (DirECCFixCount) ..75

11.4.6 ECC Data Fix Address (DatECCFix*) ...75

11.4.7 ECC Data Fix Count (DatECCFixCount)...75

11.4.8 ECC Data Fail Address (DatECCFail*) ..75

11.4.9 ECC Data Fail Count (DatECCFailCount)..75

11.4.10 Cache Flush Registers (Flush*) ...76

11.4.11 Way Mask Registers (WayMask*) ..76

4

12 Platform DMA Engine (PDMA) ..79

12.1 Functional Description ...79

12.1.1 PDMA Channels...79

12.1.2 Interrupts ...79

12.2 PDMA Memory Map ..80

12.3 Register Descriptions ..80

12.3.1 Channel Control Register (Control) ...80

12.3.2 Channel Next Configuration Register (NextConfig)...81

12.3.3 Channel Byte Transfer Register (NextBytes) ..82

12.3.4 Channel Destination Register (NextDestination)..82

12.3.5 Channel Source Address (NextSource)..82

12.3.6 Channel Exec Registers (Exec*)...82

13 Universal Asynchronous Receiver/Transmitter (UART)84

13.1 UART Overview ..84

13.2 UART Instances in FU540-C000...84

13.3 Memory Map ..85

13.4 Transmit Data Register (txdata) ...85

13.5 Receive Data Register (rxdata) ..85

13.6 Transmit Control Register (txctrl) ...86

13.7 Receive Control Register (rxctrl) ..86

13.8 Interrupt Registers (ip and ie) ..87

13.9 Baud Rate Divisor Register (div) ...87

14 Pulse Width Modulator (PWM) ...89

14.1 PWM Overview ...89

14.2 PWM Instances in FU540-C000 ...90

14.3 PWM Memory Map ...90

14.4 PWM Count Register (pwmcount) ..91

14.5 PWM Configuration Register (pwmcfg) ...92

14.6 Scaled PWM Count Register (pwms) ...93

14.7 PWM Compare Registers (pwmcmp0–pwmcmp3) ..93

5

14.8 Deglitch and Sticky Circuitry...94

14.9 Generating Left- or Right-Aligned PWM Waveforms ...95

14.10 Generating Center-Aligned (Phase-Correct) PWM Waveforms95

14.11 Generating Arbitrary PWM Waveforms using Ganging ..96

14.12 Generating One-Shot Waveforms ...97

14.13 PWM Interrupts ...97

15 Inter-Integrated Circuit (I²C) Master Interface98

15.1 I²C Instance in FU540-C000...98

16 Serial Peripheral Interface (SPI) ..99

16.1 SPI Overview..99

16.2 SPI Instances in FU540-C000 ..99

16.3 Memory Map ..100

16.4 Serial Clock Divisor Register (sckdiv) ...101

16.5 Serial Clock Mode Register (sckmode) ...102

16.6 Chip Select ID Register (csid) ..102

16.7 Chip Select Default Register (csdef) ...103

16.8 Chip Select Mode Register (csmode)..103

16.9 Delay Control Registers (delay0 and delay1) ...104

16.10 Frame Format Register (fmt) ...104

16.11 Transmit Data Register (txdata) ...105

16.12 Receive Data Register (rxdata) ..106

16.13 Transmit Watermark Register (txmark) ..106

16.14 Receive Watermark Register (rxmark) ...107

16.15 SPI Interrupt Registers (ie and ip) ..107

16.16 SPI Flash Interface Control Register (fctrl) ..108

16.17 SPI Flash Instruction Format Register (ffmt) ..108

17 General Purpose Input/Output Controller (GPIO)109

17.1 GPIO Instance in FU540-C000 ...109

17.2 Memory Map ..109

17.3 Input / Output Values ...110

6

17.4 Interrupts.. 110

17.5 Internal Pull-Ups ...111

17.6 Drive Strength...111

17.7 Output Inversion ...111

18 One-Time Programmable Memory Interface (OTP)112

18.1 OTP Overview ..112

18.2 Memory Map ..112

18.3 Detailed Register Fields...113

18.4 OTP Contents in the FU540-C000 ..116

19 Gigabit Ethernet Subsystem ...117

19.1 Gigabit Ethernet Overview ...117

19.2 Memory Map ..118

19.2.1 GEMGXL Management Block Control Registers

(0x100A_0000–0x100A_FFFF)..118

19.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)...........................119

19.3 Initialization and Software Interface ..119

20 DDR Subsystem ...120

20.1 DDR Subsystem Overview...120

20.2 Memory Map ..121

20.2.1 Bus Blocker Control Registers (0x100B_8000–0x100B_8FFF)121

20.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF)121

20.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF) ...123

20.3 Reset and Initialization...123

21 Error Device ...125

22 ChipLink ... 126

22.1 Message Signaled Interrupts (MSI) ...127

23 Debug .. 129

23.1 Debug CSRs ..129

7

23.1.1 Trace and Debug Register Select (tselect)..129

23.1.2 Trace and Debug Data Registers (tdata1-3) ..130

23.1.3 Debug Control and Status Register (dcsr) ...131

23.1.4 Debug PC dpc ...131

23.1.5 Debug Scratch dscratch...131

23.2 Breakpoints ..131

23.2.1 Breakpoint Match Control Register mcontrol ..131

23.2.2 Breakpoint Match Address Register (maddress)...133

23.2.3 Breakpoint Execution ..133

23.2.4 Sharing Breakpoints Between Debug and Machine Mode134

23.3 Debug Memory Map..134

23.3.1 Debug RAM and Program Buffer (0x300–0x3FF) ...134

23.3.2 Debug ROM (0x800–0xFFF) ..134

23.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF) ..135

23.3.4 Safe Zero Address..135

24 Debug Interface ..136

24.1 JTAG TAPC State Machine ..136

24.2 Resetting JTAG Logic ..137

24.3 JTAG Clocking ..137

24.4 JTAG Standard Instructions ...138

24.5 JTAG Debug Commands ...138

25 Errata ... 139

25.1 ROCK-1: ITIM de-allocation corrupts I-cache contents..139

25.2 ROCK-2: High 24 address bits are ignored ..139

25.3 ROCK-3: E51 atomic operations not ordered correctly ..140

25.4 ROCK-4: The DPC CSR is not sign-extended ..140

25.5 ROCK-5: Watchpoints fire after stores are issued...140

25.6 CCACHE-1: L2 ECC failed address reporting flawed ..141

25.7 I2C-1: I2C interrupt can not be cleared ..141

26 References ..142

8

Chapter 1

Introduction

The FU540-C000 is the world’s first 4+1 64-bit RISC‑V SoC, capable of supporting full-featured

operating systems, such as Linux. It is the basis for the HiFive Unleashed Development Plat-

form for the Freedom U500 family. The FU540-C000 is built around the U54-MC Core Complex

instantiated in the Freedom U500 platform and fabricated on TSMC 28HPC 28 nm process.

This manual describes the specific configuration for the FU540-C000.

The FU540-C000 is compatible with all applicable RISC‑V standards, and this document should

be read together with the official RISC‑V user-level, privileged, and external debug architecture

specifications.

1.1 FU540-C000 Overview

Figure 1 shows the overall block diagram of the FU540-C000, which contains a U54-MC Core

Complex with a 2 MiB coherent L2 cache, 64-bit + ECC DDR3/4 controller, 3 QSPI controllers, 2

UARTs, I²C, 2 PWMs, Gigabit Ethernet MAC, and ChipLink for connecting to external ChipLink

peripherals.

A feature summary table can be found in Table 1.

9

Figure 1: FU540-C000 top-level block diagram.

Copyright © 2018, SiFive Inc. All rights reserved. 10

Feature Description

RISC-V Core

4× U54 RISC‑V cores with machine, supervisor, and user mode,

32 KiB 8-way L1 I-cache, and 32 KiB 8-way L1 D-cache.

4× E51 RISC‑V cores with machine and user mode, 16 KiB 2-way L1

I-cache, and 8 KiB data tightly integrated memory (DTIM).

L2 Cache 2 MiB 16-way coherent L2 cache.

Interrupts
Software and timer interrupts, 53 peripheral interrupts connected to

the PLIC with 7 levels of priority.

DDR3/4 Controller
64 bit + ECC Memory Controller to external DDR3/DDR3L/DDR4

memory

UART 0
Universal Asynchronous/Synchronous Transmitters for serial commu-

nication.

UART 1
Universal Asynchronous/Synchronous Transmitters for serial commu-

nication.

QSPI 0 Serial Peripheral Interface. QSPI 0 has 1 chip select signal.

QSPI 1 Serial Peripheral Interface. QSPI 1 has 4 chip select signals.

QSPI 2 Serial Peripheral Interface. QSPI 2 has 1 chip select signal.

PWM 0 16-bit Pulse-width modulator with 4 comparators.

PWM 1 16-bit Pulse-width modulator with 4 comparators.

I²C 0 Inter-Integrated Circuit (I²C) controller.

GPIO 16 General Purpose I/O pins.

Gigabit Ethernet

MAC
10/100/1000 Ethernet MAC with GMII interface to an external PHY.

OTP 4Kx32b one-time programmable memory.

Table 1: FU540-C000 Feature Summary.

1.2 E51 RISC‑V Monitor Core

The FU540-C000 includes a 64-bit E51 RISC‑V core, which has a high-performance single-

issue in-order execution pipeline, with a peak sustainable execution rate of one instruction per

clock cycle. The E51 core supports Machine and User privilege modes as well as standard Mul-

tiply, Atomic, and Compressed RISC‑V extensions (RV64IMAC).

The monitor core is described in more detail in Chapter 3.

1.3 U54 RISC‑V Application Cores

The FU540-C000 includes four 64-bit U54 RISC‑V cores, which each have a high-performance

single-issue in-order execution pipeline, with a peak sustainable execution rate of one instruc-

tion per clock cycle. The U54 core supports Machine, Supervisor, and User privilege modes as

well as standard Multiply, Single-Precision Floating Point, Double-Precision Floating Point,

Atomic, and Compressed RISC‑V extensions (RV64IMAFDC).

The application cores are described in more detail in Chapter 4.

Copyright © 2018, SiFive Inc. All rights reserved. 11

1.4 Interrupts

The FU540-C000 includes a RISC-V standard platform-level interrupt controller (PLIC), which

supports 53 global interrupts with 7 priority levels. The FU540-C000 also provides the standard

RISC‑V machine-mode timer and software interrupts via the Core Local Interruptor (CLINT).

Interrupts are described in Chapter 8. The CLINT is described in Chapter 9. The PLIC is

described in Chapter 10.

1.5 On-Chip Memory System

Each U54 core’s private L1 instruction and data caches are configured to be a(n) 8-way set-

associative 32 KiB cache. The E51 monitor core has a(n) 2-way set-associative 16 KiB L1

instruction cache.

The shared 2 MiB L2 cache is divided into 4 address-interleaved banks to improve performance.

Each bank is 512 KiB and is a(n) 16-way set-associative cache. The L2 also supports runtime

reconfiguration between cache and scratchpad RAM uses. The L2 cache acts as the system

coherence hub, with an inclusive directory-based coherence scheme to avoid wasting band-

width on snoops.

All on-chip memory structures are protected with parity and/or ECC, and all cores have Physical

Memory Protection (PMP) units.

The Level 1 memories are described in Chapter 3 and Chapter 4, the PMP is described in Sec-

tion 3.7 and Section 4.9, and the L2 Cache Controller is described in Chapter 11.

1.6 Universal Asynchronous Receiver/Transmitter

Multiple universal asynchronous receiver/transmitter (UARTs) are available and provide a

means for serial communication between the FU540-C000 and off-chip devices.

The UART peripherals are described in Chapter 13.

1.7 Pulse Width Modulation

The pulse width modulation (PWM) peripheral can generate multiple types of waveforms on

GPIO output pins and can also be used to generate several forms of internal timer interrupt.

The PWM peripherals are described in Chapter 14.

1.8 I²C

The FU540-C000 has an I²C controller to communicate with external I²C devices, such as sen-

sors, ADCs, etc.

Copyright © 2018, SiFive Inc. All rights reserved. 12

The I²C is described in detail Chapter 15.

1.9 Hardware Serial Peripheral Interface (SPI)

There are 3 serial peripheral interface (SPI) controllers. Each controller provides a means for

serial communication between FU540-C000 and off-chip devices, like quad-SPI Flash memory.

Each controller supports master-only operation over single-lane, dual-lane, and quad-lane pro-

tocols. Each controller supports burst reads of 32 bytes over TileLink to accelerate instruction

cache refills. 2 SPI controllers can be programmed to support eXecute-In-Place (XIP) modes to

reduce SPI command overhead on instruction cache refills.

The SPI interface is described in more detail in Chapter 16.

1.10 GPIO Peripheral

The GPIO Peripheral manages the connections to low-speed pads for generic I/O operations.

GPIO control includes pin direction, setting and getting pin values, configuring interrupts, and

controlling dynamic pull-ups.

The GPIO complex is described in more detail in Chapter 17.

1.11 Gigabit Ethernet MAC

The FU540-C000 has a Gigabit (10/100/1000) Ethernet MAC as defined in IEEE Standard for

Ethernet (IEEE Std. 802.3-2008). The Gigabit Ethernet MAC interfaces to an external PHY

using Gigabit Media Independent Interface (GMII).

The Gigabit Ethernet MAC is described in detail in Chapter 19.

1.12 DDR Memory Subsystem

The FU540-C000 has a DDR subsystem that supports an external 64-bit wide DDR3, DDR3L or

DDR4 DRAM with optional ECC at a maximum data rate of 2400 MT/s.

Chapter 20 describes the details of the DDR Memory Subsystem.

1.13 Debug Support

The FU540-C000 provides external debugger support over an industry-standard JTAG port,

including 2 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 23, and the debug interface is described in

Chapter 24.

Copyright © 2018, SiFive Inc. All rights reserved. 13

Chapter 2

List of Abbreviations and Terms

Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT Core Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

hart HARdware Thread

DTIM Data Tightly Integrated Memory

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

WO Used to describe a Write Only registers field.

WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

14

Chapter 3

E51 RISC-V Core

This chapter describes the 64-bit E51 RISC‑V processor core used in the FU540-C000. The

E51 processor core comprises an instruction memory system, an instruction fetch unit, an exe-

cution pipeline, a data memory system, and support for global, software, and timer interrupts.

The E51 feature set is summarized in Table 2.

Feature Description

ISA RV64IMAC.

Instruction Cache 16 KiB 2-way instruction cache.

Instruction Tightly Integrated Memory The E51 has support for an ITIM with a maxi-

mum size of 8 KiB.

Data Tightly Integrated Memory 8 KiB DTIM.

ECC Support Single error correction, double error detec-

tion on the ITIM and DTIM.

Modes The E51 supports the following modes:

Machine Mode, User Mode.

Table 2: E51 Feature Set

3.1 Instruction Memory System

The instruction memory system consists of a dedicated 16 KiB 2-way set-associative instruction

cache. The access latency of all blocks in the instruction memory system is one clock cycle. The

instruction cache is not kept coherent with the rest of the platform memory system. Writes to

instruction memory must be synchronized with the instruction fetch stream by executing a

FENCE.I instruction.

The instruction cache has a line size of 64 bytes, and a cache line fill triggers a burst access.

The core caches instructions from executable addresses, with the exception of the Instruction

Tightly Integrated Memory (ITIM), which is further described in Section 3.1.1. See the

FU540-C000 Memory Map in Chapter 5 for a description of executable address regions that are

denoted by the attribute X.

15

Trying to execute an instruction from a non-executable address results in a synchronous trap.

3.1.1 I-Cache Reconfigurability

The instruction cache can be partially reconfigured into ITIM, which occupies a fixed address

range in the memory map. ITIM provides high-performance, predictable instruction delivery.

Fetching an instruction from ITIM is as fast as an instruction-cache hit, with no possibility of a

cache miss. ITIM can hold data as well as instructions, though loads and stores from a core to

its ITIM are not as performant as loads and stores to its Data Tightly Integrated Memory (DTIM).

Memory requests from one core to any other core’s ITIM are not as performant as memory

requests from a core to its own ITIM.

The instruction cache can be configured as ITIM for all ways except for 1 in units of cache lines

(64 bytes). A single instruction cache way must remain an instruction cache. ITIM is allocated

simply by storing to it. A store to the nth byte of the ITIM memory map reallocates the first n+1

bytes of instruction cache as ITIM, rounded up to the next cache line.

ITIM is deallocated by storing zero to the first byte after the ITIM region, that is, 8 KiB after the

base address of ITIM as indicated in the Memory Map in Chapter 5. The deallocated ITIM space

is automatically returned to the instruction cache.

For determinism, software must clear the contents of ITIM after allocating it. It is unpredictable

whether ITIM contents are preserved between deallocation and allocation.

3.2 Instruction Fetch Unit

The E51 instruction fetch unit contains branch prediction hardware to improve performance of

the processor core. The branch predictor comprises a 30-entry branch target buffer (BTB) which

predicts the target of taken branches, a 256-entry branch history table (BHT), which predicts the

direction of conditional branches, and a 6-entry return-address stack (RAS) which predicts the

target of procedure returns. The branch predictor has a one-cycle latency, so that correctly pre-

dicted control-flow instructions result in no penalty. Mispredicted control-flow instructions incur a

three-cycle penalty.

The E51 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions.

3.3 Execution Pipeline

The E51 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:

instruction fetch, instruction decode and register fetch, execute, data memory access, and regis-

ter writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed

so that most instructions have a one-cycle result latency. There are several exceptions:

Copyright © 2018, SiFive Inc. All rights reserved. 16

• LW has a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• CSR reads have a three-cycle result latency.

• MUL, MULH, MULHU, and MULHSU have a 5-cycle result latency.

• DIV, DIVU, REM, and REMU have between a 2-cycle and 65-cycle result latency, depending

on the operand values.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The E51 implements the standard Multiply (M) extension to the RISC‑V architecture for integer

multiplication and division. The E51 has a 16-bit per cycle hardware multiply and a 1-bit per

cycle hardware divide.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-

predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps

incur a three-cycle penalty.

Most CSR writes result in a pipeline flush with a five-cycle penalty.

3.4 Data Memory System

The E51 data memory system consists of a DTIM. The access latency from a core to its own

DTIM is two clock cycles for full words and three clock cycles for smaller quantities. Memory

requests from one core to any other core’s DTIM are not as performant as memory requests

from a core to its own DTIM. Misaligned accesses are not supported in hardware and result in a

trap to allow software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 Atomic Memory Operations

The E51 core supports the RISC‑V standard Atomic (A) extension on the DTIM and the periph-

eral memory region. Atomic memory operations to regions that do not support them generate an

access exception precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions,

hence generate an access exception on DTIM and other uncached memory regions.

See The RISC‑V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 for more infor-

mation on the instructions added by this extension.

Copyright © 2018, SiFive Inc. All rights reserved. 17

3.6 Supported Modes

The E51 supports RISC‑V user mode, providing two levels of privilege: machine (M) and user

(U).

U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.7 Physical Memory Protection (PMP)

The E51 includes a Physical Memory Protection (PMP) unit compliant with The RISC‑V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10. PMP can be used to set mem-

ory access privileges (read, write, execute) for specified memory regions. The E51 PMP sup-

ports 8 regions with a minimum region size of 4 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the E51. The

definitive resource for information about the RISC‑V PMP is The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

3.7.1 Functional Description

The E51 includes a PMP unit, which can be used to restrict access to memory and isolate

processes from each other.

The E51 PMP unit has 8 regions and a minimum granularity of 4 bytes. Overlapping regions are

permitted. The E51 PMP unit implements the architecturally defined pmpcfgX CSR pmpcfg0

supporting 8 regions. pmpcfg1, pmpcfg2, and pmpcfg3 are implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on U-mode accesses. However, locked regions (see Section 3.7.2) additionally

enforce their permissions on M-mode.

3.7.2 Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpicfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on M-Mode accesses. When the L bit is set, these permissions are enforced for all

privilege modes. When the L bit is clear, the R/W/X permissions apply only to U-mode.

Copyright © 2018, SiFive Inc. All rights reserved. 18

3.8 Hardware Performance Monitor

The FU540-C000 supports a basic hardware performance monitoring facility compliant with The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The mcycle

CSR holds a count of the number of clock cycles the hart has executed since some arbitrary

time in the past. The minstret CSR holds a count of the number of instructions the hart has

retired since some arbitrary time in the past. Both are 64-bit counters.

The hardware performance monitor includes two additional event counters, mhpmcounter3 and

mhpmcounter4. The event selector CSRs mhpmevent3 and mhpmevent4 are registers that con-

trol which event causes the corresponding counter to increment. The mhpmcounters are 40-bit

counters.

The event selectors are partitioned into two fields, as shown in Table 3: the lower 8 bits select

an event class, and the upper bits form a mask of events in that class. The counter increments if

the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to

0x4200, then mhpmcounter3 will increment when either a load instruction or a conditional

branch instruction retires. Note that an event selector of 0 means "count nothing."

Copyright © 2018, SiFive Inc. All rights reserved. 19

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

Microarchitectural Events , mhpeventX[7:0] = 1

Bits Meaning

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

Memory System Events, mhpeventX[7:0] = 2

Bits Meaning

8 Instruction cache miss

9 Memory-mapped I/O access

Table 3: mhpmevent Register Description

3.9 ECC

The E51 Instruction Cache and ITIM implement Single-Error Correcting and Double-Error

Detecting (SECDED) Error Correcting Code. The granularity at which this protection is applied

(the codeword) is 32-bit (with an ECC overhead of 7 bits per codeword).

3.9.1 Single Bit Errors

In the case of a single-bit error in the L1 Instruction Cache, the error is corrected, and the cache

line is flushed. When a single-bit error is detected in the ITIM or the DTIM, the error is corrected

and written back to the SRAM.

Copyright © 2018, SiFive Inc. All rights reserved. 20

Chapter 4

U54 RISC-V Core

This chapter describes the 64-bit U54 RISC‑V processor core used in the FU540-C000. The

U54 processor core comprises an instruction memory system, an instruction fetch unit, an exe-

cution pipeline, a floating-point unit, a data memory system, a memory management unit, and

support for global, software, and timer interrupts.

The U54 feature set is summarized in Table 4.

Feature Description

ISA RV64IMAFDC.

Instruction Cache 32 KiB 8-way instruction cache.

Instruction Tightly Integrated Memory The U54 has support for an ITIM with a maxi-

mum size of 28 KiB.

Data Cache 32 KiB 8-way data cache.

ECC Support Single error correction, double error detec-

tion on the ITIM and Data Cache.

Virtual Memory Support The U54 has support for Sv39 virtual mem-

ory support with a 39-bit virtual address

space, 38-bit physical address space, and a

32-entry TLB.

Modes The U54 supports the following modes:

Machine Mode, Supervisor Mode, User

Mode.

Table 4: U54 Feature Set

4.1 Instruction Memory System

The instruction memory system consists of a dedicated 32 KiB 8-way set-associative instruction

cache. The access latency of all blocks in the instruction memory system is one clock cycle. The

instruction cache is not kept coherent with the rest of the platform memory system. Writes to

instruction memory must be synchronized with the instruction fetch stream by executing a

FENCE.I instruction.

21

The instruction cache has a line size of 64 bytes, and a cache line fill triggers a burst access.

The core caches instructions from executable addresses, with the exception of the Instruction

Tightly Integrated Memory (ITIM), which is further described in Section 3.1.1. See the

FU540-C000 Memory Map in Chapter 5 for a description of executable address regions that are

denoted by the attribute X.

Trying to execute an instruction from a non-executable address results in a synchronous trap.

4.1.1 I-Cache Reconfigurability

The instruction cache can be partially reconfigured into ITIM, which occupies a fixed address

range in the memory map. ITIM provides high-performance, predictable instruction delivery.

Fetching an instruction from ITIM is as fast as an instruction-cache hit, with no possibility of a

cache miss. ITIM can hold data as well as instructions, though loads and stores from a core to

its ITIM are not as performant as hits in the D-Cache. Memory requests from one core to any

other core’s ITIM are not as performant as memory requests from a core to its own ITIM.

The instruction cache can be configured as ITIM for all ways except for 1 in units of cache lines

(64 bytes). A single instruction cache way must remain an instruction cache. ITIM is allocated

simply by storing to it. A store to the nth byte of the ITIM memory map reallocates the first n+1

bytes of instruction cache as ITIM, rounded up to the next cache line.

ITIM is deallocated by storing zero to the first byte after the ITIM region, that is, 28 KiB after the

base address of ITIM as indicated in the Memory Map in Chapter 5. The deallocated ITIM space

is automatically returned to the instruction cache.

For determinism, software must clear the contents of ITIM after allocating it. It is unpredictable

whether ITIM contents are preserved between deallocation and allocation.

4.2 Instruction Fetch Unit

The U54 instruction fetch unit contains branch prediction hardware to improve performance of

the processor core. The branch predictor comprises a 30-entry branch target buffer (BTB) which

predicts the target of taken branches, a 256-entry branch history table (BHT), which predicts the

direction of conditional branches, and a 6-entry return-address stack (RAS) which predicts the

target of procedure returns. The branch predictor has a one-cycle latency, so that correctly pre-

dicted control-flow instructions result in no penalty. Mispredicted control-flow instructions incur a

three-cycle penalty.

The U54 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions.

Copyright © 2018, SiFive Inc. All rights reserved. 22

4.3 Execution Pipeline

The U54 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:

instruction fetch, instruction decode and register fetch, execute, data memory access, and regis-

ter writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed

so that most instructions have a one-cycle result latency. There are several exceptions:

• LW has a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• CSR reads have a three-cycle result latency.

• MUL, MULH, MULHU, and MULHSU have a 5-cycle result latency.

• DIV, DIVU, REM, and REMU have between a 2-cycle and 65-cycle result latency, depending

on the operand values.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The U54 implements the standard Multiply (M) extension to the RISC‑V architecture for integer

multiplication and division. The U54 has a 16-bit per cycle hardware multiply and a 1-bit per

cycle hardware divide.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-

predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps

incur a three-cycle penalty.

Most CSR writes result in a pipeline flush with a five-cycle penalty.

4.4 Data Memory System

The U54 data memory system has a 8-way set-associative 32 KiB write-back data cache that

supports 64-byte cache lines. The access latency is two clock cycles for words and double-

words, and three clock cycles for smaller quantities. Misaligned accesses are not supported in

hardware and result in a trap to support software emulation. The data caches are kept coherent

with a directory-based cache coherence manager, which resides in the outer L2 cache.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

4.5 Atomic Memory Operations

The U54 core supports the RISC‑V standard Atomic (A) extension on the DTIM and the periph-

eral memory region. Atomic memory operations to regions that do not support them generate an

access exception precisely at the core.

Copyright © 2018, SiFive Inc. All rights reserved. 23

The load-reserved and store-conditional instructions are only supported on cached regions,

hence generate an access exception on DTIM and other uncached memory regions.

See The RISC‑V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 for more infor-

mation on the instructions added by this extension.

4.6 Floating-Point Unit (FPU)

The U54 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for

32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined

fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,

and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE

default values.

4.7 Virtual Memory Support

The U54 has support for virtual memory through the use of a Memory Management Unit (MMU).

The MMU supports the Bare and Sv39 modes as described in The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

The U54 MMU has a 39 virtual address space mapped to a 38 physical address space. A hard-

ware page-table walker refills the address translation caches. Both first-level instruction and

data address translation caches are fully associative and have 32 entries. There is also a unified

second-level translation cache with 128 entries. The MMU supports 2 MiB megapages and 1

GiB gigapages to reduce translation overheads for large contiguous regions of virtual and physi-

cal address space.

Note that the U54 does not automatically set the Accessed (A) and Dirty (D) bits in a Sv39

Page Table Entry (PTE). Instead, the U54 MMU will raise a page fault exception for a read to a

page with PTE.A=0 or a write to a page with PTE.D=0.

4.8 Supported Modes

The U54 supports RISC‑V supervisor and user modes, providing three levels of privilege:

machine (M), supervisor (S) and user (U).

U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.

S-mode adds a number of additional CSRs and capabilities.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

Copyright © 2018, SiFive Inc. All rights reserved. 24

4.9 Physical Memory Protection (PMP)

The U54 includes a Physical Memory Protection (PMP) unit compliant with The RISC‑V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10. PMP can be used to set mem-

ory access privileges (read, write, execute) for specified memory regions. The U54 PMP sup-

ports 8 regions with a minimum region size of 4 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the U54. The

definitive resource for information about the RISC‑V PMP is The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

4.9.1 Functional Description

The U54 includes a PMP unit, which can be used to restrict access to memory and isolate

processes from each other.

The U54 PMP unit has 8 regions and a minimum granularity of 4 bytes. Overlapping regions are

permitted. The U54 PMP unit implements the architecturally defined pmpcfgX CSR pmpcfg0

supporting 8 regions. pmpcfg1, pmpcfg2, and pmpcfg3 are implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on S-mode and U-mode accesses. However, locked regions (see Section 3.7.2) addi-

tionally enforce their permissions on M-mode.

4.9.2 Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpicfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on M-Mode accesses. When the L bit is set, these permissions are enforced for all

privilege modes. When the L bit is clear, the R/W/X permissions apply only to U-mode.

4.10 Hardware Performance Monitor

The FU540-C000 supports a basic hardware performance monitoring facility compliant with The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The mcycle

CSR holds a count of the number of clock cycles the hart has executed since some arbitrary

time in the past. The minstret CSR holds a count of the number of instructions the hart has

retired since some arbitrary time in the past. Both are 64-bit counters.

The hardware performance monitor includes two additional event counters, mhpmcounter3 and

mhpmcounter4. The event selector CSRs mhpmevent3 and mhpmevent4 are registers that con-

trol which event causes the corresponding counter to increment. The mhpmcounters are 40-bit

counters.

Copyright © 2018, SiFive Inc. All rights reserved. 25

The event selectors are partitioned into two fields, as shown in Table 5: the lower 8 bits select

an event class, and the upper bits form a mask of events in that class. The counter increments if

the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to

0x4200, then mhpmcounter3 will increment when either a load instruction or a conditional

branch instruction retires. Note that an event selector of 0 means "count nothing."

Copyright © 2018, SiFive Inc. All rights reserved. 26

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events , mhpeventX[7:0] = 1

Bits Meaning

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

18 Floating-point interlock

Memory System Events, mhpeventX[7:0] = 2

Bits Meaning

8 Instruction cache miss

9 Data cache miss or memory-mapped I/O access

10 Data cache writeback

11 Instruction TLB miss

12 Data TLB miss

Table 5: mhpmevent Register Description

Copyright © 2018, SiFive Inc. All rights reserved. 27

4.11 ECC

The U54 Instruction Cache, ITIM, and Data Cache implement Single-Error Correcting and Dou-

ble-Error Detecting (SECDED) Error Correcting Code. The granularity at which this protection is

applied (the codeword) is 32-bit (with an ECC overhead of 7 bits per codeword).

4.11.1 Single Bit Errors

In the case of a single-bit error in the L1 Instruction Cache, the error is corrected, and the cache

line is flushed. When a single-bit error is detected in the ITIM, the error is corrected and written

back to the SRAM.

When the L1 Data Cache encounters a single-bit error, the Data Cache corrects the error, invali-

dates the cache line, and writes the line back to the next level of memory hierarchy.

Copyright © 2018, SiFive Inc. All rights reserved. 28

Chapter 5

Memory Map

The memory map of the FU540-C000 is shown in Table 6.

29

Base Top Attr. Description Notes

0x0000_0000 0x0000_00FF Reserved

0x0000_0100 0x0000_0FFF RWX A Debug
Debug Address Space

0x0000_1000 0x0000_1FFF R X Mode Select

0x0000_2000 0x0000_FFFF Reserved

0x0001_0000 0x0001_7FFF R X Mask ROM

(32 KiB)

0x0001_8000 0x00FF_FFFF Reserved

0x0100_0000 0x0100_1FFF RWX A E51 DTIM (8 KiB)

0x0100_2000 0x017F_FFFF Reserved

0x0180_0000 0x0180_1FFF RWX A E51 Hart 0 ITIM

(8 KiB)

0x0180_2000 0x0180_7FFF Reserved

0x0180_8000 0x0180_EFFF RWX A U54 Hart 1 ITIM

(28 KiB)

0x0180_F000 0x0180_FFFF Reserved

0x0181_0000 0x0181_6FFF RWX A U54 Hart 2 ITIM

(28 KiB)

0x0181_7000 0x0181_7FFF Reserved

0x0181_8000 0x0181_EFFF RWX A U54 Hart 3 ITIM

(28 KiB)

0x0181_F000 0x0181_FFFF Reserved

0x0182_0000 0x0182_6FFF RWX A U54 Hart 4 ITIM

(28 KiB)

0x0182_7000 0x01FF_FFFF Reserved

0x0200_0000 0x0200_FFFF RW A CLINT

0x0201_0000 0x0201_0FFF RW A Cache Controller

0x0201_1000 0x0201_FFFF Reserved

0x0202_0000 0x0202_0FFF RW A MSI

0x0202_1000 0x02FF_FFFF Reserved

0x0300_0000 0x030F_FFFF RW A DMA Controller

0x0310_0000 0x07FF_FFFF Reserved

0x0800_0000 0x09FF_FFFF RWX A L2 LIM (32 MiB)

0x0A00_0000 0x0BFF_FFFF RWXCA L2 Zero device

0x0C00_0000 0x0FFF_FFFF RW A PLIC

0x1000_0000 0x1000_0FFF RW A PRCI

0x1000_1000 0x1000_FFFF Reserved

0x1001_0000 0x1001_0FFF RW A UART 0

0x1001_1000 0x1001_1FFF RW A UART 1

0x1001_2000 0x1001_FFFF Reserved

0x1002_0000 0x1002_0FFF RW A PWM 0

0x1002_1000 0x1002_1FFF RW A PWM 1

On-Chip Peripherals

Table 6: FU540-C000 Memory Map. Memory Attributes: R - Read, W - Write, X - Execute, C -

Cacheable, A - Atomics

Copyright © 2018, SiFive Inc. All rights reserved. 30

Base Top Attr. Description Notes

0x1002_2000 0x1002_FFFF Reserved

0x1003_0000 0x1003_0FFF RW A I2C

0x1003_1000 0x1003_FFFF Reserved

0x1004_0000 0x1004_0FFF RW A QSPI 0

0x1004_1000 0x1004_1FFF RW A QSPI 1

0x1004_2000 0x1004_FFFF Reserved

0x1005_0000 0x1005_0FFF RW A QSPI 2

0x1005_1000 0x1005_FFFF Reserved

0x1006_0000 0x1006_0FFF RW A GPIO

0x1006_1000 0x1006_FFFF Reserved

0x1007_0000 0x1007_0FFF RW A OTP

0x1007_1000 0x1007_FFFF Reserved

0x1008_0000 0x1008_0FFF RW A Pin Control

0x1008_1000 0x1008_FFFF Reserved

0x1009_0000 0x1009_1FFF RW A Ethernet MAC

0x1009_2000 0x1009_FFFF Reserved

0x100A_0000 0x100A_0FFF RW A Ethernet Manage-

ment

0x100A_1000 0x100A_FFFF Reserved

0x100B_0000 0x100B_3FFF RW A DDR Control

0x100B_4000 0x100B_FFFF Reserved

0x100C_0000 0x100C_3FFF RW A DDR Management

0x100C_4000 0x17FF_FFFF Reserved

0x1800_0000 0x1FFF_FFFF RW CA Error Device

0x2000_0000 0x2FFF_FFFF R X A QSPI 0 Flash

(256 MiB)

0x3000_0000 0x3FFF_FFFF R X A QSPI 1 Flash

(256 MiB)

Off-Chip Non-Volatile

Memory

0x4000_0000 0x5FFF_FFFF RWX A ChipLink

(512 MiB)

0x6000_0000 0x7FFF_FFFF RWXCA ChipLink

(512 MiB)

ChipLink

0x8000_0000 0x1F_FFFF_FFFF RWX A DDR Memory

(126 GiB)

Off-Chip Volatile Mem-

ory

0x20_0000_0000 0x2F_FFFF_FFFF RWX A ChipLink (64 GiB)

0x30_0000_0000 0x3F_FFFF_FFFF RWXCA ChipLink (64 GiB)
ChipLink

Table 6: FU540-C000 Memory Map. Memory Attributes: R - Read, W - Write, X - Execute, C -

Cacheable, A - Atomics

Copyright © 2018, SiFive Inc. All rights reserved. 31

Chapter 6

Boot Process

The FU540-C000 supports booting from several sources, which are controlled using the Mode

Select (MSEL[3:0]) pins on the chip. Typically, the boot process runs through several stages

before it begins execution of user-provided programs. These stages typically include the follow-

ing:

1. Zeroth Stage Boot Loader (ZSBL), which is contained in an on-chip mask ROM

2. First Stage Boot Loader (FSBL), which brings up PLLs and DDR memory; described

is the default SiFive-provided FSBL for this chip

3. Berkeley Boot Loader (BBL), which adds emulation for soft instructions; described is

the default SiFive-provided BBL used at product launch

4. User Payload, which contains the software to run, typically Linux

Both the ZSBL and FSBL download the next stage boot loader based on the MSEL setting. All

possible values are enumerated in Table 7. The three QSPI interfaces on the FU540-C000 can

be used to download media either from SPI flash (using x4 data pins or x1) or an SD card, using

the SPI protocol. These boot methods are detailed at the end of this chapter.

32

MSEL FSBL BBL Purpose

0000 - - loops forever waiting for debugger

0001 - - jump directly to 0x2000_0000 (memory-mapped QSPI0)

0010 - - jump directly to 0x3000_0000 (memory-mapped QSPI1)

0011 - - jump directly to 0x4000_0000 (uncached ChipLink)

0100 - - jump directly to 0x6000_0000 (cached ChipLink)

0101 QSPI0 x1 QSPI0 x1 -

0110 QSPI0 x4 QSPI0 x4 Rescue image from flash (preprogrammed)

0111 QSPI1 x4 QSPI1 x4 -

1000 QSPI1 SD QSPI1 SD -

1001 QSPI2 x1 QSPI2 x1 -

1010 QSPI0 x4 QSPI1 SD -

1011 QSPI2 SD QSPI2 SD Rescue image from SD card

1100 QSPI1 x1 QSPI2 SD -

1101 QSPI1 x4 QSPI2 SD -

1110 QSPI0 x1 QSPI2 SD -

1111 QSPI0 x4 QSPI2 SD Default boot mode

Table 7: Boot media used by ZSBL and FSBL dependinf on Mode Select (MSEL)

Copyright © 2018, SiFive Inc. All rights reserved. 33

6.1 Reset Vector

On power-on, all cores jump to 0x1004 while running directly off of the external clock input,

expected to be 33.3 MHz. The memory at this location contains:

Address Contents

0x1000 The MSEL pin state

0x1004 auipc t0, 0

0x1008 lw t1, -4(t0)

0x100C slli t1, t1, 0x3

0x1010 add t0, t0, t1

0x1014 lw t0, 252(t0)

0x1018 jr t0

Table 8: Reset vector ROM

This small gate ROM implements an MSEL-dependent jump for all cores as follows:

MSEL Reset address Purpose

0000 0x0000_1004 loops forever waiting for debugger

0001 0x2000_0000 memory-mapped QSPI0

0010 0x3000_0000 memory-mapped QSPI1

0011 0x4000_0000 uncached ChipLink

0100 0x6000_0000 cached ChipLink

0101 0x0001_0000 ZSBL

0110 0x0001_0000 ZSBL

0111 0x0001_0000 ZSBL

1000 0x0001_0000 ZSBL

1001 0x0001_0000 ZSBL

1010 0x0001_0000 ZSBL

1011 0x0001_0000 ZSBL

1100 0x0001_0000 ZSBL

1101 0x0001_0000 ZSBL

1110 0x0001_0000 ZSBL

1111 0x0001_0000 ZSBL

Table 9: Target of the reset vector

6.2 Zeroth Stage Boot Loader (ZSBL)

The Zeroth Stage Boot Loader (ZSBL) is contained in a mask ROM at 0x1_0000. It is responsi-

ble for downloading the more complicated FSBL from a GUID Partition Table. All cores enter the

ZSBL running directly off of the external clock input, expected to be at 33.3 MHz. The core with

Copyright © 2018, SiFive Inc. All rights reserved. 34

mhartid zero configures the peripheral clock dividers and then searches for a partition with

GUID type 5B193300-FC78-40CD-8002-E86C45580B47. It does this by first downloading the

GPT header (bytes 512-604) and then sequentially scanning the partition table block by block

(512 bytes) until the partition is found. Then, the entire contents of this partition, the FSBL, are

downloaded into the L2 LIM at address 0x0800_0000. Execution then branches to the FSBL.

The ZSBL uses the MSEL pins to determine where to look for the FSBL partition:

MSEL FSBL location Method Width

0101 QSPI0 flash memory-mapped x1

0110 QSPI0 flash memory-mapped x4

0111 QSPI1 flash memory-mapped x4

1000 QSPI1 SD card bit-banged x1

1001 QSPI2 flash bit-banged x1

1010 QSPI0 flash memory-mapped x4

1011 QSPI2 SD card bit-banged x1

1100 QSPI1 flash bit-banged x1

1101 QSPI1 flash memory-mapped x4

1110 QSPI0 flash bit-banged x1

1111 QSPI0 flash memory-mapped x4

Table 10: FSBL location downloaded by the ZSBL

6.3 First Stage Boot Loader (FSBL)

The First Stage Boot Loader (FSBL) is executed from the L2 LIM, located at 0x0800_0000. It is

responsible for preparing the system to run from DDR. It performs these operations:

• Switch core frequency to 1 GHz (or 500 MHz if TLCLKSEL=1) by configuring and running off

the on-chip PLL

• Configure DDR PLL, PHY, and controller

• Set GEM GXL TX PLL to 125 MHz and reset it

• If there is an external PHY, reset it

• Download BBL from a partition with GUID type

2E54B353-1271-4842-806F-E436D6AF69851

• Scan the OTP for the chip serial number

• Copy the embedded DTB to DDR, filling in FSBL version, memory size, and MAC address

• Enable 15 of the 16 L2 ways (this removes almost all of the L2 LIM memory)

• Jump to DDR memory (0x8000_0000)

Copyright © 2018, SiFive Inc. All rights reserved. 35

The FSBL reads the MSEL switches to determine where to look for the BBL partition:

MSEL BBL location Method Width

0101 QSPI0 flash memory-mapped x1

0110 QSPI0 flash memory-mapped x4

0111 QSPI1 flash memory-mapped x4

1000 QSPI1 SD card bit-banged x1

1001 QSPI2 flash bit-banged x1

1010 QSPI1 SD card bit-banged x1

1011 QSPI2 SD card bit-banged x1

1100 QSPI2 SD card bit-banged x1

1101 QSPI2 SD card bit-banged x1

1110 QSPI2 SD card bit-banged x1

1111 QSPI2 SD card bit-banged x1

Table 11: BBL location downloaded by the FSBL

6.4 Berkeley Boot Loader (BBL)

The Berkeley Boot Loader (BBL) is executed from DDR, located at 0x8000_0000. It is responsi-

ble for providing the Supervisor Binary Interface (SBI) as well as emulating any RISC-V required

instructions that are not implemented by the chip itself. At the time of writing, BBL often includes

an embedded Linux kernel payload that it jumps to once the SBI is initialized.

6.5 Boot Methods

Both the ZSBL and FSBL download the next stage boot-loader from a QSPI interface. However,

the protocol used varies depending on MSEL. The details of these boot methods are detailed

here.

6.5.1 Flash Bit-Banged x1

When using the flash bit-banged boot method, the firmware switches the QSPI controller out of

flash memory-mapped mode and sends SPI commands directly to the controller. In this mode,

the QSPI interface is clocked no higher than 10 MHz. When the core is running at 33.3 MHz,

this means 8.3 MHz. At 1 GHz, this means exactly 10 MHz.

The firmware first sends commands RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses READ (0x03) with a 3-byte address

and no dummy cycles. Data is streamed continuously for the entire transfer. This means that

partitions needed during boot must be located within the low 16 MiB of the flash.

Copyright © 2018, SiFive Inc. All rights reserved. 36

6.5.2 Flash Memory-Mapped x1

When using the flash memory-mapped x1 boot method, the firmware uses the QSPI controller’s

hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 33.3 MHz, this means 8.3 MHz. At 1 GHz, this means

exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses memcpy from the memory-mapped

QSPI region. The QSPI controller is configured so that hardware flash interfaces uses READ

(0x03) with a 3-byte address and no dummy cycles. Data is streamed continuously for the

entire transfer. This means that partitions needed during boot must be located within the low

16 MiB of the flash.

6.5.3 Flash Memory-Mapped x4

When using the flash memory-mapped x4 boot method, the firmware uses the QSPI controller’s

hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 33.3 MHz, this means 8.3 MHz. At 1 GHz, this means

exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses memcpy from the memory-mapped

QSPI region. The QSPI controller is configured so that hardware flash interfaces uses

FAST_READ_QUAD_OUTPUT (0x6b) with a 3-byte address and 8 dummy cycles. Data is streamed

continuously for the entire transfer. This means that partitions needed during boot must be

located within the low 16 MiB of the flash.

6.5.4 SD Card Bit-Banged x1

When using the SD card boot method, the firmware performs these initialization steps:

1. Wait 1 ms before initiating commands.

2. Set the QSPI controller to 400 kHz.

3. Send 10 SPI clock pulses with CS inactive.

4. Send CMD0, CMD8, ACMD41, CMD58, CMD16.

5. Set the QSPI controller to 20 MHz.

To download data required during GPT parsing and partition payload, it uses the

READ_BLOCK_MULTIPLE (18) command. Data is streamed continuously for the entire transfer.

Copyright © 2018, SiFive Inc. All rights reserved. 37

Chapter 7

Clocking and Reset

This chapter describes the clocking and reset operation of the FU540-C000.

Clocking and reset is managed by the PRCI (Power Reset Clocking Interrupt) block (Figure 2).

Figure 2: Clocking and Reset Architecture

38

7.1 Clocking

FU540-C000 generates all internal clocks from 33.33 MHz hfclk driven from an external oscil-

lator (HFCLKIN) or crystal (HFOSCIN) input, selected by input HFXSEL.

All harts operate in a single clock domain (coreclk) supplied by a single PLL, which steps

33.33 MHz hfclk up to higher frequencies. The recommended frequency of coreclk is

1.0 GHz, however operation at upto 1.5 GHz is possible.

The L2 cache and peripherals such as UART, SPI, I2C, and PWM operate in a single clock

domain (tlclk) running at coreclk/2 rate. There is a low-latency 2:1 crossing between

coreclk and tlclk domains.

The DDR and Ethernet Subsystems operate asynchronously. The PRCI contains two dedicated

PLLs used to step 33.33 MHz hfclk up to their operating frequencies.

The PRCI contains memory-mapped registers that control the clock selection and configuration

of the PLLs. On power-on, the default PRCI register settings start the harts running directly from

hfclk. All additional clock management, for instance initializing the DDR PLL or stepping the

coreclk frequency, is performed through software reads and writes to the memory-mapped

PRCI control registers.

The CPU real time clock (rtcclk) runs at 1 MHz and is driven from input pin RTCCLKIN. This

should be connected to an external oscillator.

JTAG debug logic runs off of JTAG TCK as described in Chapter 23.

7.2 Reset

The FU540-C000 has two external reset pins.

PORESET_N is an asynchonous active low power-on reset that should be connected to an exter-

nal power sequencing/supervisory circuit.

ERESET_N is an asynchonous active low reset that can be connected to a reset button. There is

internal debounce and stretch logic.

The PRCI contains hardware to generate internal synchronous resets for coreclk and tlclk

domains and handle reset to and from the debug module. Reset for the DDR and Ethernet Sub-

systems is performed through software reads and writes to memory-mapped PRCI control regis-

ters.

7.3 Memory Map (0x1000_0000–0x1000_0FFF)

This section presents an overview of the PRCI control and configuration registers.

Copyright © 2018, SiFive Inc. All rights reserved. 39

Crystal Input Control Register (hfxosccfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[28:0] Reserved

29 xosc_rdy RO 0x0 Crystal input ready

30 xosccfg_en RW 0x1 Crystal input enable

Core PLL Configuration Register (corepllcfg0)

Register Offset 0x4

Bits Field

Name

Attr. Rst. Description

[5:0] divr RW 0x1 PLL reference divider value minus one

[14:6] divf RW 0x1F PLL feedback divider value minus one

[17:15] divq RW 0x3 Log2 of PLL output divider. Valid settings are 1, 2, 3, 4,

5, 6

[20:18] range RW 0x0 PLL filter range. 3’b100 = 33MHz

[23:21] Reserved

24 bypass RW 0x0 PLL bypass

25 fse RW 0x1 Internal or external input path. Valid setting is 1, internal

feedback.

[30:26] Reserved

31 lock RO 0x0 PLL locked

DDR PLL Configuration Register (ddrpllcfg0)

Register Offset 0xC

Bits Field

Name

Attr. Rst. Description

[5:0] divr RW 0x1 PLL reference divider value minus one

[14:6] divf RW 0x1F PLL feedback divider value minus one

[17:15] divq RW 0x3 Log2 of PLL output divider. Valid settings are 1,2,3,4,5,6

[20:18] range RW 0x0 PLL filter range. 3’b100 = 33MHz

[23:21] Reserved

24 bypass RW 0x0 PLL bypass

25 fse RW 0x1 Internal or external input path. Valid settings is 1, inter-

nal feedback.

[30:26] Reserved

31 lock RO 0x0 PLL locked

Table 12: Crystal Input Control Register

Table 13: Core PLL Configuration Register

Table 14: DDR PLL Configuration Register

Copyright © 2018, SiFive Inc. All rights reserved. 40

DDR PLL Configuration Register (ddrpllcfg1)

Register Offset 0x10

Bits Field

Name

Attr. Rst. Description

[23:0] Reserved

24 cke RW 0x0 PLL clock output enable. Glitch free clock gate after PLL

output. 1 enables clock, 0 disables clock

Gigabit Ethernet PLL Configuration Register (gemgxlpllcfg0)

Register Offset 0x1C

Bits Field

Name

Attr. Rst. Description

[5:0] divr RW 0x1 PLL reference divider value minus one

[14:6] divf RW 0x1F PLL feedback divider value minus one

[17:15] divq RW 0x3 Log2 of PLL output divider. Valid settings are 1,2,3,4,5,6

[20:18] range RW 0x0 PLL filter range. 3’b100 = 33MHz

[23:21] Reserved

24 bypass RW 0x0 PLL bypass

25 fse RW 0x1 Internal or external input path. Valid settings is 1, inter-

nal feedback.

[30:26] Reserved

31 lock RO 0x0 PLL locked

Gigabit Ethernet PLL Configuration Register (gemgxlpllcfg1)

Register Offset 0x20

Bits Field

Name

Attr. Rst. Description

[23:0] Reserved

24 cke RW 0x0 PLL clock output enable. Glitch free clock gate after PLL

output. 1 enables clock, 0 disables clock

CORECLK Source Selection Register (coreclksel)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

0 coreclksel RW 0x1 CORECLK select. 0 = CORE_PLL output 1 = HFCLK

[31:1] Reserved

Table 15: DDR PLL Configuration Register

Table 16: Gigabit Ethernet PLL Configuration Register

Table 17: Gigabit Ethernet PLL Configuration Register

Table 18: CORECLK Source Selection Register

Copyright © 2018, SiFive Inc. All rights reserved. 41

Peripheral Devices Reset Control Register (devicesresetreg)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

0 DDR_CTRL_RST_N RW 0x0 DDR Controller reset (active low)

1 DDR_AXI_RST_N RW 0x0 DDR Controller AXI interface reset (active low)

2 DDR_AHB_RST_N RW 0x0 DDR Controller AHB interface reset (active low)

3 DDR_PHY_RST_N RW 0x0 DDR PHY reset (active low)

4 Reserved

5 GEMGXL_RST_N RW 0x0 Gigabit Ethernet Subsystem reset (active low)

7.4 Reset and Clock Initialization

7.4.1 Power-On

1. The PCB should strap input signal HFXSEL to set the 33.33 MHz hfclk clock

source. To use a Crystal clock source connected to pins HFXOSCIN and HFXOSCOUT,

connect HFXSEL to GND. To use an Oscillator clock source connected to HFXCLKIN,

connect HFXSEL to VCC.

2. At power-on, PORESET_N should be asserted by an external power sequencing/

supervisory circuit. After power-ramp and valid hfclk, PORESET_N should be driven

low for a minimum of 10 ns.

3. Harts begin the Boot Flow described in Chapter 6, running at 33.33 MHz hfclk.

7.4.2 Setting coreclk frequency

1. COREPLL Setup

COREPLL is configured in software by setting the corepllcfg0 PRCI control register.

The input reference frequency for COREPLL is 33.33 MHz.

There is a reference frequency divider before the PLL loop. The divider value is

equal to PRCI PLL configuration register field divr + 1. The minimum supported

post-divide frequency is 7 MHz; thus, valid settings are 0, 1, and 2.

The valid PLL VCO range is 2400 MHz to 4800 MHz. The VCO feedback divider

value is equal to 2 x (divf + 1).

There is a further output divider after the PLL loop. The divider value is equal to

2divq. The maximum value of DIVQ is 6, and the valid output range is 20 to

2400 MHz.

Table 19: Peripheral Devices Reset Control Register

Copyright © 2018, SiFive Inc. All rights reserved. 42

For example, to setup COREPLL for 1 GHz operation, program divr = 0 (x1), divf

= 59 (4000 MHz VCO), divq = 2 (/4 Output divider).

2. Wait for Lock

Poll PRCI PLL configuration register field lock to wait for PLL lock.

3. Switch coreclk from 33 MHz hfclk to COREPLL

A glitch-free clock mux (GLCM) switches the driver of coreclk between hfclk and

COREPLL at runtime, under control of the PRCI control register coreclksel. Setting

CORECLKSEL equal to 0 selects COREPLL output.

7.4.3 DDR and Ethernet Subsystem Clocking and Reset

The active-low, synchronous resets for the DDR and Ethernet subsystem are connected via

clock domain synchronizers to the PRCI Devices Reset Control Register (devicesresetreg).

On power-on, this register is set to zero holding both blocks in reset. Clocking and Reset is ini-

tialized in the First Stage Boot Loader (FSBL).

1. DDRPLL and GEMGXLPLL Setup

The DDR and Ethernet subsystem input clocks are driven from DDRPLL and

GEMGXLPLL in the PRCI. The two PLLs are programmed as per COREPLL using

steps 1 and 2 listed above. GEMGXLPLL is set up for 125 MHz output frequency.

divr = 0, divf = 59 (4000 MHz VCO), divq = 5 DDRPLL is set up to run at the

memory MT/s divided by 4.

2. Wait for lock

Poll PRCI PLL configuration register field lock to wait for PLL lock.

3. Release Clock Gate

Both PLLs have an additional glitch-free clock gate on output controlled by PRCI

PLL configuration register field cke. This gate prevents runt pulses from clocking

these complex IPs during PLL lock. After PLL lock, the clock gate is released by set-

ting CKE to 1.

4. Release Reset

After the clock is initialized, synchronous reset is released by setting the appropriate

bits in the PRCI Peripheral Devices Reset Control Register (devicesresetreg) to

1.

GEMGXL reset is released by setting PRCI Devices Reset Control Register

(devicesresetreg) field gemgxl_rst_n to 1. The complete reset sequence for the

DDR Subsystem is documented in Chapter 20.

Copyright © 2018, SiFive Inc. All rights reserved. 43

Chapter 8

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the

FU540-C000. The definitive resource for information about the RISC‑V interrupt architecture is

The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

8.1 Interrupt Concepts

FU540-C000 has support for the following interrupts: local (including software and timer) and

global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt. Software and timer interrupts are local interrupts generated by the Core Local

Interruptor (CLINT). The FU540-C000 contains no other local interrupt sources.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

By default, all interrupts are handled in machine mode. For harts that support supervisor mode,

it is possible to selectively delegate interrupts to supervisor mode.

This chapter describes the FU540-C000 interrupt architecture. Chapter 9 describes the Core

Local Interruptor. Chapter 10 describes the global interrupt architecture and the PLIC design.

The FU540-C000 interrupt architecture is depicted in Figure 3.

44

Figure 3: FU540-C000 Interrupt Architecture Block Diagram.

8.2 Interrupt Entry and Exit

When a RISC‑V hart takes an interrupt, the following occurs:

• The value of mstatus.MIE is copied into mstatus.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The current pc is copied into the mepc register, and then pc is set to the value of mtvec. In

the case where vectored interrupts are enabled, pc is set to mtvec.BASE + 4 × exception

code.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

Copyright © 2018, SiFive Inc. All rights reserved. 45

• The value of mstatus.MPIE is copied into mstatus.MIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 8.3

8.3 Interrupt Control Status Registers

The FU540-C000 specific implementation of interrupt CSRs is described below. For a complete

description of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

8.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the FU540-C000 is provided in Table 20. Note that this is not a complete description of mstatus

as it contains fields unrelated to interrupts. For the full description of mstatus, please consult

the The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable

2 Reserved WPRI

3 MIE RW Machine Interrupt Enable

4 Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

6 Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

8 SPP RW Supervisor Previous Privilege Mode

[10:9] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 20: FU540-C000 mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 8.3.2.

Copyright © 2018, SiFive Inc. All rights reserved. 46

8.3.2 Machine Interrupt Enable Register (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 21.

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

2 Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

4 Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

6 Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

8 Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

10 Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[63:12] Reserved WPRI

Table 21: mie Register

8.3.3 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 22.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RW Supervisor Software Interrupt Pending

2 Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

4 Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

6 Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

8 Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

10 Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[63:12] Reserved WIRI

Table 22: mip Register

Copyright © 2018, SiFive Inc. All rights reserved. 47

8.3.4 Machine Cause Register (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous

exceptions, in which case the most-significant bit of mcause is set to 0. See Table 23. Refer to

Table 24 for a list of synchronous exception codes.

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[62:0] Exception Code WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 23: mcause Register

Copyright © 2018, SiFive Inc. All rights reserved. 48

Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 Reserved

1 3 Machine software interrupt

1 4 Reserved

1 5 Supervisor timer interrupt

1 6 Reserved

1 7 Machine timer interrupt

1 8 Reserved

1 9 Supervisor external interrupt

1 8 Reserved

1 11 Machine external interrupt

1 ≥ 12 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 Environment call from S-mode

0 10 Reserved

0 11 Environment call from M-mode

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO page fault

0 ≥ 16 Reserved

Table 24: mcause Exception Codes

8.3.5 Machine Trap Vector (mtvec)

By default, all interrupts trap to a single address defined in the mtvec register. It is up to the

interrupt handler to read mcause and react accordingly. RISC‑V and the FU540-C000 also sup-

port the ability to optionally enable interrupt vectors. When vectoring is enabled, each interrupt

defined in mie will trap to its own specific interrupt handler. This allows all local interrupts to trap

to exclusive handlers. Even with vectoring enabled, all global interrupts will trap to the same

global interrupt vector.

Vectored interrupts are enabled when the MODE field of the mtvec register is set to 1.

Copyright © 2018, SiFive Inc. All rights reserved. 49

Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE determines whether or not interrupt

vectoring is enabled. The encoding for the

MODE field is described in Table 26.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be

aligned on a 128-byte boundary when

MODE=1. Note, BASE[1:0] is not present in

this register and is implicitly 0.

Table 25: mtvec Register

MODE Field Encoding mtvec.MODE

Value Name Description

0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

cause.

≥ 2 Reserved

Table 26: Encoding of mtvec.MODE

If vectored interrupts are disabled (mtvec.MODE =0), all interrupts trap to the mtvec.BASE

address. If vectored interrupts are enabled (mtvec.MODE=1), interrupts set the pc to

mtvec.BASE + 4 × exception code. For example, if a machine timer interrupt is taken, the pc is

set to mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to

transfer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,

when interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global

interrupt.

See Table 25 for a description of the mtvec register. See Table 26 for a description of the

mtvec.MODE field. See Table 24 for the FU540-C000 interrupt exception code values.

8.4 Supervisor Mode Interrupts

The FU540-C000 supports the ability to selectively direct interrupts and exceptions to supervisor

mode, resulting in improved performance by eliminating the need for additional mode changes.

This capability is enabled by the interrupt and exception delegation CSRs; mideleg and

medeleg, respectively. Supervisor interrupts and exceptions can be managed via supervisor ver-

sions of the interrupt CSRs, specifically: stvec, sip, sie, and scause.

Copyright © 2018, SiFive Inc. All rights reserved. 50

Machine mode software can also directly write to the sip register, which effectively sends an

interrupt to supervisor mode. This is especially useful for timer and software interrupts as it may

be desired to handle these interrupts in both machine mode and supervisor mode.

The delegation and supervisor CSRs are described in the sections below. The definitive

resource for information about RISC‑V supervisor interrupts is The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

8.4.1 Delegation Registers (m*deleg)

By default, all traps are handled in machine mode. Machine mode software can selectively dele-

gate interrupts and exceptions to supervisor mode by setting the corresponding bits in mideleg

and medeleg CSRs. The exact mapping is provided in Table 27 and Table 28 and matches the

mcause interrupt and exception codes defined in Table 24.

Note that local interrupts can not be delegated to supervisor mode.

Machine Interrupt Delegation Register

CSR mideleg

Bits Field Name Attr. Description

0 Reserved WARL

1 MSIP RW Delegate Supervisor Software Interrupt

[4:2] Reserved WARL

5 MTIP RW Delegate Supervisor Timer Interrupt

[8:6] Reserved WARL

9 MEIP RW Delegate Supervisor External Interrupt

[63:10] Reserved WARL

Table 27: mideleg Register

Copyright © 2018, SiFive Inc. All rights reserved. 51

Machine Exception Delegation Register

CSR medeleg

Bits Field Name Attr. Description

0 RW Delegate Instruction Access Misaligned

Exception

1 RW Delegate Instruction Access Fault Exception

2 RW Delegate Illegal Instruction Exception

3 RW Delegate Breakpoint Exception

4 RW Delegate Load Access Misaligned Exception

5 RW Delegate Load Access Fault Exception

6 RW Delegate Store/AMO Address Misaligned

Exception

7 RW Delegate Store/AMO Access Fault Exception

8 RW Delegate Environment Call from U-Mode

9 RW Delegate Environment Call from S-Mode

[11:0] Reserved WARL

12 RW Delegate Instruction Page Fault

13 RW Delegate Load Page Fault

14 Reserved WARL

15 RW Delegate Store/AMO Page Fault Exception

[63:16] Reserved WARL

Table 28: medeleg Register

8.4.2 Supervisor Status Register (sstatus)

Similar to machine mode, supervisor mode has a register dedicated to keeping track of the

hart’s current state called sstatus. sstatus is effectively a restricted view of mstatus,

described in Section 8.3.1, in that changes made to sstatus are reflected in mstatus and vice-

versa, with the exception of the machine mode fields, which are not visible in sstatus.

A summary of the sstatus fields related to interrupts in the FU540-C000 is provided in Table

29. Note that this is not a complete description of sstatus as it also contains fields unrelated to

interrupts. For the full description of sstatus, consult the The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

Copyright © 2018, SiFive Inc. All rights reserved. 52

Supervisor Status Register

CSR sstatus

Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable

[4:2] Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

[7:6] Reserved WPRI

8 SPP RW Supervisor Previous Privilege Mode

[12:9] Reserved WPRI

Table 29: FU540-C000 sstatus Register (partial)

Interrupts are enabled by setting the SIE bit in sstatus and by enabling the desired individual

interrupt in the sie register, described in Section 8.4.3.

8.4.3 Supervisor Interrupt Enable Register (sie)

Supervisor interrupts are enabled by setting the appropriate bit in the sie register. The

FU540-C000 sie register is described in Table 30.

Supervisor Interrupt Enable Register

CSR sie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

[4:2] Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

[8:6] Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

[63:10] Reserved WPRI

Table 30: sie Register

8.4.4 Supervisor Interrupt Pending (sip)

The supervisor interrupt pending (sip) register indicates which interrupts are currently pending.

The FU540-C000 sip register is described in Table 31.

Copyright © 2018, SiFive Inc. All rights reserved. 53

Supervisor Interrupt Pending Register

CSR sip

Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RW Supervisor Software Interrupt Pending

[4:2] Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

[8:6] Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

[63:10] Reserved WIRI

Table 31: sip Register

8.4.5 Supervisor Cause Register (scause)

When a trap is taken in supervisor mode, scause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

scause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in sip. For example, a Supervisor Timer Interrupt causes scause

to be set to 0x8000_0000_0000_0005.

scause is also used to indicate the cause of synchronous exceptions, in which case the most-

significant bit of scause is set to 0. Refer to Table 33 for a list of synchronous exception codes.

Supervisor Cause Register

CSR scause

Bits Field Name Attr. Description

[62:0] Exception Code WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 32: scause Register

Copyright © 2018, SiFive Inc. All rights reserved. 54

Supervisor Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 – 4 Reserved

1 5 Supervisor timer interrupt

1 6 – 8 Reserved

1 9 Supervisor external interrupt

1 ≥ 10 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Reserved

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 – 11 Reserved

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO Page Fault

0 ≥ 16 Reserved

Table 33: scause Exception Codes

8.4.6 Supervisor Trap Vector (stvec)

By default, all interrupts trap to a single address defined in the stvec register. It is up to the

interrupt handler to read scause and react accordingly. RISC‑V and the FU540-C000 also sup-

port the ability to optionally enable interrupt vectors. When vectoring is enabled, each interrupt

defined in sie will trap to its own specific interrupt handler.

Vectored interrupts are enabled when the MODE field of the stvec register is set to 1.

Copyright © 2018, SiFive Inc. All rights reserved. 55

Supervisor Trap Vector Register

CSR stvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE determines whether or not interrupt

vectoring is enabled. The encoding for the

MODE field is described in Table 35.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be

aligned on a 128-byte boundary when

MODE=1. Note, BASE[1:0] is not present in

this register and is implicitly 0.

Table 34: stvec Register

MODE Field Encoding stvec.MODE

Value Name Description

0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

cause.

≥ 2 Reserved

Table 35: Encoding of stvec.MODE

If vectored interrupts are disabled (stvec.MODE=0), all interrupts trap to the stvec.BASE

address. If vectored interrupts are enabled (stvec.MODE=1), interrupts set the pc to stvec.BASE

+ 4 × exception code. For example, if a supervisor timer interrupt is taken, the pc is set to

stvec.BASE + 0x14. Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All supervisor external interrupts (global interrupts) are mapped to exception code of 9. Thus,

when interrupt vectoring is enabled, the pc is set to address stvec.BASE + 0x24 for any global

interrupt.

See Table 34 for a description of the stvec register. See Table 35 for a description of the

stvec.MODE field. See Table 33 for the FU540-C000 supervisor mode interrupt exception code

values.

8.4.7 Delegated Interrupt Handling

Upon taking a delegated trap, the following occurs:

• The value of sstatus.SIE is copied into sstatus.SPIE, then sstatus.SIE is cleared,

effectively disabling interrupts.

Copyright © 2018, SiFive Inc. All rights reserved. 56

• The current pc is copied into the sepc register, and then pc is set to the value of stvec. In

the case where vectored interrupts are enabled, pc is set to stvec.BASE + 4 × exception

code.

• The privilege mode prior to the interrupt is encoded in sstatus.SPP.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting sstatus.SIE or by executing an SRET instruc-

tion to exit the handler. When an SRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in sstatus.SPP.

• The value of sstatus.SPIE is copied into sstatus.SIE.

• The pc is set to the value of sepc.

At this point, control is handed over to software.

8.5 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 10.

FU540-C000 interrupts are prioritized as follows, in decreasing order of priority:

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

• Supervisor external interrupts

• Supervisor software interrupts

• Supervisor timer interrupts

8.6 Interrupt Latency

Interrupt latency for the FU540-C000 is 4 cycles, as counted by the numbers of cycles it takes

from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is

clocked by tlClk. This means that the total latency, in cycles, for a global interrupt is: 4 + 3

(coreClk Hz tlClk Hz). This is a best case cycle count and assumes the handler is cached

or located in ITIM. It does not take into account additional latency from a peripheral source.

Additionally, the hart will not abandon a Divide instruction in flight. This means if an interrupt

handler tries to use a register that is the destination register of a divide instruction the pipeline

stalls until the divide is complete.

Copyright © 2018, SiFive Inc. All rights reserved. 57

Chapter 9

Core Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software

and timer interrupts. The FU540-C000 CLINT complies with The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

9.1 CLINT Memory Map

Table 36 shows the memory map for CLINT on SiFive FU540-C000.

Address Width Attr. Description Notes

0x200000 4B RW msip for hart 0

0x200004 4B RW msip for hart 1

0x200008 4B RW msip for hart 2

0x20000c 4B RW msip for hart 3

0x200010 4B RW msip for hart 4

MSIP Registers (1 bit wide)

0x204028

…

0x20bff7

Reserved

0x204000 8B RW mtimecmp for hart 0

0x204008 8B RW mtimecmp for hart 1

0x204010 8B RW mtimecmp for hart 2

0x204018 8B RW mtimecmp for hart 3

0x204020 8B RW mtimecmp for hart 4

MTIMECMP Registers

0x204028

…

0x20bff7

Reserved

0x20bff8 8B RW mtime Timer Register

0x20c000 Reserved

Table 36: CLINT Register Map

58

9.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to

0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

isters are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.

9.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the RTCCLK

input described in Chapter 7. A timer interrupt is pending whenever mtime is greater than or

equal to the value in the mtimecmp register. The timer interrupt is reflected in the mtip bit of the

mip register described in Chapter 8.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

9.4 Supervisor Mode Delegation

By default, all interrupts trap to machine mode, including timer and software interrupts. In order

for supervisor timer and software interrupts to trap directly to supervisor mode, supervisor timer

and software interrupts must first be delegated to supervisor mode.

Please see Section 8.4 for more details on supervisor mode interrupts.

Copyright © 2018, SiFive Inc. All rights reserved. 59

Chapter 10

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the

FU540-C000. The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10 and supports 53 interrupt sources with 7 priority levels.

The FU540-C000 PLIC resides in the tlClk timing domain, allowing for relaxed timing require-

ments. The latency of global interrupts, as perceived by a hart, increases with the ratio of the

coreClk frequency and the tlClk frequency.

10.1 Memory Map

The memory map for the FU540-C000 PLIC control registers is shown in Table 37. The PLIC

memory map has been designed to only require naturally aligned 32-bit memory accesses.

60

PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority

…

0x0C00_00D8 4B RW source 53 priority

See Section 10.3 for more

information

0x0C00_00DC

…

Reserved

0x0C00_1000 4B RO Start of pending array

…

0x0C00_1004 4B RO Last word of pending array

See Section 10.4 for more

information

0x0C00_1008

…

Reserved

0x0C00_2000 4B RW Start Hart 0 M-Mode inter-

rupt enables

…

0x0C00_2004 4B RW End Hart 0 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2008

…

Reserved

0x0C00_2080 4B RW Start Hart 1 M-Mode inter-

rupt enables

…

0x0C00_2084 4B RW End Hart 1 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2088

…

Reserved

0x0C00_2100 4B RW Start Hart 1 S-Mode interrupt

enables

…

0x0C00_2104 4B RW End Hart 1 S-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2108

…

Reserved

0x0C00_2180 4B RW Start Hart 2 M-Mode inter-

rupt enables

…

0x0C00_2184 4B RW End Hart 2 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2188

…

Reserved

Table 37: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

Copyright © 2018, SiFive Inc. All rights reserved. 61

PLIC Register Map

0x0C00_2200 4B RW Start Hart 2 S-Mode interrupt

enables

…

0x0C00_2204 4B RW End Hart 2 S-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2208

…

Reserved

0x0C00_2280 4B RW Start Hart 3 M-Mode inter-

rupt enables

…

0x0C00_2284 4B RW End Hart 3 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2288

…

Reserved

0x0C00_2300 4B RW Start Hart 3 S-Mode interrupt

enables

…

0x0C00_2304 4B RW End Hart 3 S-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2308

…

Reserved

0x0C00_2380 4B RW Start Hart 4 M-Mode inter-

rupt enables

…

0x0C00_2384 4B RW End Hart 4 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2388

…

Reserved

0x0C00_2400 4B RW Start Hart 4 S-Mode interrupt

enables

…

0x0C00_2404 4B RW End Hart 4 S-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2408

…

Reserved

0x0C20_0000 4B RW Hart 0 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_0004 4B RW Hart 0 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_0008

…

Reserved

Table 37: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

Copyright © 2018, SiFive Inc. All rights reserved. 62

PLIC Register Map

0x0C20_1000 4B RW Hart 1 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_1004 4B RW Hart 1 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_1008

…

Reserved

0x0C20_2000 4B RW Hart 1 S-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_2004 4B RW Hart 1 S-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_2008

…

Reserved

0x0C20_3000 4B RW Hart 2 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_3004 4B RW Hart 2 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_3008

…

Reserved

0x0C20_4000 4B RW Hart 2 S-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_4004 4B RW Hart 2 S-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_4008

…

Reserved

0x0C20_5000 4B RW Hart 3 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_5004 4B RW Hart 3 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_5008

…

Reserved

0x0C20_6000 4B RW Hart 3 S-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_6004 4B RW Hart 3 S-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_6008

…

Reserved

0x0C20_7000 4B RW Hart 4 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_7004 4B RW Hart 4 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_7008

…

Reserved

Table 37: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

Copyright © 2018, SiFive Inc. All rights reserved. 63

PLIC Register Map

0x0C20_8000 4B RW Hart 4 S-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_8004 4B RW Hart 4 S-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_8008

…

Reserved

0x1000_0000 End of PLIC Memory Map

Table 37: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

10.2 Interrupt Sources

The FU540-C000 has 53 interrupt sources. These are driven by various on-chip devices as

listed in Table 38. These signals are positive-level triggered.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt."

Source Start Source End Source

1 3 L2 Cache

4 4 UART0

5 5 UART1

6 6 QSPI2

7 22 GPIO

23 30 DMA

31 31 DDR Subsystem

32 41 Chiplink MSI

42 45 PWM0

46 49 PWM1

50 50 I2C

51 51 QSPI0

52 52 QSPI1

53 53 Gigabit Ethernet

Table 38: PLIC Interrupt Source Mapping

10.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The FU540-C000 supports 7 levels of priority. A priority value of 0 is

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest

active priority, and priority 7 is the highest. Ties between global interrupts of the same priority

are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.

See Table 39 for the detailed register description.

Copyright © 2018, SiFive Inc. All rights reserved. 64

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Sets the priority for a given global inter-

rupt.

[31:3] Reserved RO 0

Table 39: PLIC Interrupt Priority Registers

10.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 2 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the FU540-C000 has 2 interrupt pending registers. Bit

0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 10.7.

PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 40: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 2 (pending2)

Base Address 0x0C00_1004

Bits Field Name Attr. Rst. Description

0 Interrupt 32 Pend-

ing

RO 0 Pending bit for global interrupt 32

…

21 Interrupt 53 Pend-

ing

RO 0 Pending bit for global interrupt 53

[31:22] Reserved WIRI X

Table 41: PLIC Interrupt Pending Register 2

Copyright © 2018, SiFive Inc. All rights reserved. 65

10.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.

The enables registers are accessed as a contiguous array of 2 × 32-bit words, packed the

same way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0

and is hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.

PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 42: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 2 (enable2) for Hart 4 S-Mode

Base Address 0x0C00_2404

Bits Field Name Attr. Rst. Description

0 Interrupt 32

Enable

RW X Enable bit for global interrupt 32

…

21 Interrupt 53

Enable

RW X Enable bit for global interrupt 53

[31:22] Reserved RO 0

Table 43: PLIC Interrupt Enable Register 2 for Hart 4 S-Mode

10.6 Priority Thresholds

The FU540-C000 supports setting of an interrupt priority threshold via the threshold register.

The threshold is a WARL field, where the FU540-C000 supports a maximum threshold of 7.

The FU540-C000 masks all PLIC interrupts of a priority less than or equal to threshold. For

example, a threshold value of zero permits all interrupts with non-zero priority, whereas a

value of 7 masks all interrupts.

Copyright © 2018, SiFive Inc. All rights reserved. 66

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

Table 44: PLIC Interrupt Threshold Register

10.7 Interrupt Claim Process

A FU540-C000 hart can perform an interrupt claim by reading the claim/complete register

(Table 45), which returns the ID of the highest-priority pending interrupt or zero if there is no

pending interrupt. A successful claim also atomically clears the corresponding pending bit on

the interrupt source.

A FU540-C000 hart can perform a claim at any time, even if the MEIP bit in its mip (Table 22)

register is not set.

The claim operation is not affected by the setting of the priority threshold register.

10.8 Interrupt Completion

A FU540-C000 hart signals it has completed executing an interrupt handler by writing the inter-

rupt ID it received from the claim to the claim/complete register (Table 45). The PLIC does not

check whether the completion ID is the same as the last claim ID for that target. If the comple-

tion ID does not match an interrupt source that is currently enabled for the target, the completion

is silently ignored.

Copyright © 2018, SiFive Inc. All rights reserved. 67

PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0004

[31:0] Interrupt Claim/

Complete for Hart

0 M-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.

Table 45: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode

Copyright © 2018, SiFive Inc. All rights reserved. 68

Chapter 11

Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the

FU540-C000.

11.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for

masters in a Core Complex. The Level 2 Cache Controller also acts as directory-based

coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility as it allows for several features in

addition to the Level 2 Cache functionality. These include memory-mapped access to L2 Cache

RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC support

with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 11.2.

11.2 Functional Description

The FU540-C000 L2 Cache Controller is configured into 4 banks. Each bank contains 512 sets

of 16 ways and each way contains a 64-byte block. This subdivision into banks helps facilitate

increased available bandwidth between CPU masters and the L2 Cache as each bank has its

own 128-bit TL-C inner port. As such, multiple requests to different banks may proceed in paral-

lel.

The outer port of the L2 Cache Controller is a 256-bit TL-C port shared among all banks and

typically connected to a DDR controller. The overall organization of the L2 Cache Controller is

depicted in Figure 4.

69

Figure 4: Organization of the SiFive L2 Cache Controller

11.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)

Similar to the ITIM discussed in Chapter 3, the SiFive Level 2 Cache Controller allows for its

SRAMs to act either as direct addressed memory in the Core Complex address space or as a

cache that is controlled by the L2 Cache Controller and which can contain a copy of any

cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely Integrated Memory

(L2-LIM) address space as described in the FU540-C000 memory map in Chapter 5. Fetching

instructions or data from the L2-LIM provides deterministic behavior equivalent to an L2 cache

hit, with no possibility of a cache miss. Accesses to L2-LIM are always given priority over cache

way accesses, which target the same L2 cache bank.

Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to

the WayEnable register described in Section 11.4.2. Once a cache way is enabled, it can not be

disabled unless the FU540-C000 is reset. The highest numbered L2 Cache Way is mapped to

Copyright © 2018, SiFive Inc. All rights reserved. 70

the lowest L2-LIM address space, and way 1 occupies the highest L2-LIM address range. As L2

cache ways are enabled, the size of the L2-LIM address space shrinks. The mapping of L2

cache ways to L2-LIM address space is show in Figure 5.

Figure 5: Mapping of L2 Cache Ways to L2-LIM Addresses

11.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able

to allocate into by using the WayMaskX register described in Section 11.4.11. Note that WayMaskX

registers only affect allocations, and reads can still occur to ways that are masked. As such, it

becomes possible to lock down specific cache ways by masking them in all WayMaskX registers.

In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

11.2.3 L2 Scratchpad

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-

cation into the cache using an address range which is not memory backed. This address region

is denoted as the L2 Zero Device in the Memory Map in Chapter 5. Writes to the scratchpad

region allocate into cache ways that are enabled and not masked. Care must be taken with the

scratchpad, however, as there is no memory backing this address space. Cache evictions from

addresses in the scratchpad result in data loss.

Copyright © 2018, SiFive Inc. All rights reserved. 71

The main advantage of the L2 Scratchpad over the L2-LIM is that it is a cacheable region allow-

ing for data stored to the scratchpad to also be cached in a master’s L1 data cache resulting in

faster access.

The recommended procedure for using the L2 Scratchpad is as follows:

1. Use the WayEnable register to enable the desired cache ways.

2. Designate a single master that will allocate into the scratchpad. For this procedure,

we designate this master as Master S. All other masters are denoted as Masters X.

3. Masters X: Write to the WayMaskX register to mask the ways that are to be used for

the scratchpad. This prevents Masters X from evicting cache lines in the designated

scratchpad ways.

4. Master S: Write to the WayMaskX register to mask all ways except the ways that are

to be used for the scratchpad. At this point, Master S should only be able to allocate

into the cache ways meant to be used as a scratchpad.

5. Master S: Write scratchpad data into the L2 Scratchpad address range (L2 Zero

Device).

6. Master S: Use the WayMaskX register to mask the scratchpad ways for Master S so

that it is no longer able to evict cache lines from the designated scratchpad ways.

7. At this point, the scratchpad ways should contain the scratchpad data, with all mas-

ters able to read, write, and execute from this address space, and no masters able

to evict the scratchpad contents.

11.2.4 Error Correcting Codes (ECC)

The SiFive Level 2 Cache Controller supports ECC. ECC is applied to both categories of SRAM

used, the data SRAMs and the meta-data SRAMs (index, tag, and directory information). The

data SRAMs use Single Error Correction and Double Error Detection (SECDED). The meta-data

SRAMs use Single Error Correction (SEC).

Whenever a correctable error is detected, the cache immediately repairs the corrupted bit and

writes it back to SRAM. This corrective procedure is completely invisible to application software.

However, to support diagnostics, the cache records the address of the most recently corrected

meta-data and data errors. Whenever a new error is corrected, a counter is increased and an

interrupt is raised. There are independent addresses, counters, and interrupts for correctable

meta-data and data errors.

DirError, DataError, and DataFail signals are used to indicate that an L2 meta-data, data,

or uncorrectable L2 data error has occurred, respectively. These signals are connected to the

PLIC as described in Chapter 10 and are cleared upon reading their respective count registers.

11.3 Memory Map

The L2 Cache Controller memory map is shown in Table 46.

Copyright © 2018, SiFive Inc. All rights reserved. 72

Offset Name Description

0x000 Config Information about the Cache Configuration

0x008 WayEnable The index of the largest way which has been enabled. May

only be increased.

0x040 ECCInjectError Inject an ECC Error

0x100 DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x104 DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x108 DirECCFixCount Reports the number of times an ECC error occured

0x140 DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x144 DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x148 DatECCFixCount Reports the number of times an ECC error occured

0x160 DatECCFailLow The low 32-bits of the most recent address to fail ECC

0x164 DatECCFailHigh The high 32-bits of the most recent address to fail ECC

0x168 DatECCFailCount Reports the number of times an ECC error occured

0x200 Flush64 Flush the phsyical address equal to the 64-bit written data from

the cache

0x240 Flush32 Flush the physical address equal to the 32-bit written data << 4

from the cache

0x800 WayMask0 Master 0 way mask register

0x808 WayMask1 Master 1 way mask register

0x810 WayMask2 Master 2 way mask register

0x818 WayMask3 Master 3 way mask register

0x820 WayMask4 Master 4 way mask register

0x828 WayMask5 Master 5 way mask register

0x830 WayMask6 Master 6 way mask register

0x838 WayMask7 Master 7 way mask register

0x840 WayMask8 Master 8 way mask register

0x848 WayMask9 Master 9 way mask register

0x850 WayMask10 Master 10 way mask register

0x858 WayMask11 Master 11 way mask register

0x860 WayMask12 Master 12 way mask register

0x868 WayMask13 Master 13 way mask register

0x870 WayMask14 Master 14 way mask register

0x878 WayMask15 Master 15 way mask register

0x880 WayMask16 Master 16 way mask register

0x888 WayMask17 Master 17 way mask register

0x890 WayMask18 Master 18 way mask register

0x898 WayMask19 Master 19 way mask register

0x8A0 WayMask20 Master 20 way mask register

Table 46: Register offsets within the L2 Cache Controller Control Memory Map

Copyright © 2018, SiFive Inc. All rights reserved. 73

11.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache

Controller.

11.4.1 Cache Configuration Register (Config)

The Config Register can be used to programmatically determine information regarding the

cache size and organization.

Config: Information about the Cache Configuration (Config)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] Banks RO 0x4 Number of banks in the cache

[15:8] Ways RO 0x10 Number of ways per bank

[23:16] lgSets RO 0x9 Base-2 logarithm of the sets per bank

[31:24] lgBlockBytes RO 0x6 Base-2 logarithm of the bytes per cache block

11.4.2 Way Enable Register (WayEnable)

The WayEnable register determines which ways of the Level 2 Cache Controller are enabled as

cache. Cache ways that are not enabled are mapped into the FU540-C000’s L2-LIM (Loosely

Integrated Memory) as described in the memory map in Chapter 5.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,

only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a

cache way is enabled, the only way to map it back into the L2-LIM address space is by a reset.

WayEnable: The index of the largest way which has been enabled. May only be

increased. (WayEnable)

Register Offset 0x8

Bits Field

Name

Attr. Rst. Description

[7:0] WayEnable RW 0x0 The index of the largest way which has been enabled.

May only be increased.

[31:8] Reserved

11.4.3 ECC Error Injection Register (ECCInjectError)

The ECCInjectError register can be used to insert an ECC error into either the backing data or

meta-data SRAM. This function can be used to test error correction logic, measurement, and

recovery.

Table 47: Config: Information about the Cache Configuration

Table 48: WayEnable: The index of the largest way which has been enabled. May only be

increased.

Copyright © 2018, SiFive Inc. All rights reserved. 74

ECCInjectError: Inject an ECC Error (ECCInjectError)

Register Offset 0x40

Bits Field Name Attr. Rst. Description

[7:0] ECCToggleBit RW 0x0 Toggle (corrupt) this bit index on the next cache

operation

[15:8] Reserved

16 ECCToggleType RW 0x0 Toggle (corrupt) a bit in 0=data or 1=directory

[31:17] Reserved

11.4.4 ECC Directory Fix Address (DirECCFix*)

The DirECCFixHi and DirECCFixLow registers are read-only registers that contain the address

of the most recently corrected meta-data error. This field supplies only the portions of the

address that correspond to the affected set and bank, since all ways are corrected together.

11.4.5 ECC Directory Fix Count (DirECCFixCount)

The DirECCFixCount register is a read-only register that contains the number of corrected L2

meta-data errors.

Reading this register clears the DirError interrupt signal described in Section 11.2.4.

11.4.6 ECC Data Fix Address (DatECCFix*)

The DatECCFixLow and DatECCFixHigh registers are read-only registers that contain the

address of the most recently corrected L2 data error.

11.4.7 ECC Data Fix Count (DatECCFixCount)

The DataECCFixCount register is a read-only register that contains the number of corrected

data errors.

Reading this register clears the DataError interrupt signal described in Section 11.2.4.

11.4.8 ECC Data Fail Address (DatECCFail*)

The DatECCFailLow and DatECCFailHigh registers are a read-only registers that contain the

address of the most recent uncorrected L2 data error.

11.4.9 ECC Data Fail Count (DatECCFailCount)

The DatECCFailCount register is a read-only register that contains the number of uncorrected

data errors.

Table 49: ECCInjectError: Inject an ECC Error

Copyright © 2018, SiFive Inc. All rights reserved. 75

Reading this register clears the DataFail interrupt signal described in Section 11.2.4.

11.4.10 Cache Flush Registers (Flush*)

The FU540-C000 L2 Cache Controller provides two registers that can be used for flushing spe-

cific cache blocks.

Flush64 is a 64-bit write-only register that flushes the cache block containing the address writ-

ten. Flush32 is a 32-bit write-only register that flushes a cache block containing the written

address left shifted by 4 bytes. In both registers, all bits must be written in a single access for

the flush to take effect.

11.4.11 Way Mask Registers (WayMask*)

The WayMaskX register allows a master connected to the L2 Cache Controller to specify which

L2 cache ways can be evicted by master X. Masters can still access memory cached in masked

ways. The mapping between masters and their L2 master IDs is shown in Table 52.

At least one cache way must be enabled. It is recommended to set/clear bits in this register

using atomic operations.

WayMask0: Master 0 way mask register (WayMask0)

Register Offset 0x800

Bits Field Name Attr. Rst. Description

0 WayMask0[0] RW 0x1 Enable way 0 for Master 0

1 WayMask0[1] RW 0x1 Enable way 1 for Master 0

2 WayMask0[2] RW 0x1 Enable way 2 for Master 0

3 WayMask0[3] RW 0x1 Enable way 3 for Master 0

4 WayMask0[4] RW 0x1 Enable way 4 for Master 0

5 WayMask0[5] RW 0x1 Enable way 5 for Master 0

6 WayMask0[6] RW 0x1 Enable way 6 for Master 0

7 WayMask0[7] RW 0x1 Enable way 7 for Master 0

8 WayMask0[8] RW 0x1 Enable way 8 for Master 0

9 WayMask0[9] RW 0x1 Enable way 9 for Master 0

10 WayMask0[10] RW 0x1 Enable way 10 for Master 0

11 WayMask0[11] RW 0x1 Enable way 11 for Master 0

12 WayMask0[12] RW 0x1 Enable way 12 for Master 0

13 WayMask0[13] RW 0x1 Enable way 13 for Master 0

14 WayMask0[14] RW 0x1 Enable way 14 for Master 0

15 WayMask0[15] RW 0x1 Enable way 15 for Master 0

[63:16] Reserved

…

Table 50: WayMask0: Master 0 way mask register

Copyright © 2018, SiFive Inc. All rights reserved. 76

WayMask20: Master 20 way mask register (WayMask20)

Register Offset 0x8A0

Bits Field Name Attr. Rst. Description

0 WayMask20[0] RW 0x1 Enable way 0 for Master 20

1 WayMask20[1] RW 0x1 Enable way 1 for Master 20

2 WayMask20[2] RW 0x1 Enable way 2 for Master 20

3 WayMask20[3] RW 0x1 Enable way 3 for Master 20

4 WayMask20[4] RW 0x1 Enable way 4 for Master 20

5 WayMask20[5] RW 0x1 Enable way 5 for Master 20

6 WayMask20[6] RW 0x1 Enable way 6 for Master 20

7 WayMask20[7] RW 0x1 Enable way 7 for Master 20

8 WayMask20[8] RW 0x1 Enable way 8 for Master 20

9 WayMask20[9] RW 0x1 Enable way 9 for Master 20

10 WayMask20[10] RW 0x1 Enable way 10 for Master 20

11 WayMask20[11] RW 0x1 Enable way 11 for Master 20

12 WayMask20[12] RW 0x1 Enable way 12 for Master 20

13 WayMask20[13] RW 0x1 Enable way 13 for Master 20

14 WayMask20[14] RW 0x1 Enable way 14 for Master 20

15 WayMask20[15] RW 0x1 Enable way 15 for Master 20

[63:16] Reserved

Table 51: WayMask20: Master 20 way mask register

Copyright © 2018, SiFive Inc. All rights reserved. 77

Master ID Description

0 Core 0 DCache MMIO

1 Core 0 ICache

2 Core 1 DCache

3 Core 1 ICache

4 Core 2 DCache

5 Core 2 ICache

6 Core 3 DCache

7 Core 3 ICache

8 Core 4 DCache

9 Core 4 ICache

10 DMA

11 Chiplink Domain #1-7 Prefetch

12 ChipLink Domain #0

13 ChipLink Domain #1

14 ChipLink Domain #2

15 ChipLink Domain #3

16 ChipLink Domain #4

17 ChipLink Domain #5

18 ChipLink Domain #6

19 ChipLink Domain #7

20 GEMGXL ID#0

Table 52: Master IDs in the L2 Cache Controller

Copyright © 2018, SiFive Inc. All rights reserved. 78

Chapter 12

Platform DMA Engine (PDMA)

This chapter describes the SiFive platform DMA (PDMA) engine. The PDMA unit has memory-

mapped control registers accessed over a TileLink slave interface to allow software to set up

DMA transfers. It also has a TileLink bus master port into the TileLink bus fabric to allow it to

autonomously transfer data between slave devices and main memory or to rapidly copy data

between two locations in memory. The PDMA unit can support multiple independent simultane-

ous DMA transfers using different PDMA channels and can generate PLIC interrupts on various

conditions during DMA execution.

12.1 Functional Description

12.1.1 PDMA Channels

The FU540-C000 PDMA has 4 independent DMA channels, which operate concurrently to sup-

port multiple simultaneous transfers. Each channel has an independent set of control registers,

which are described in Section 12.2 and Section 12.3, and 8 interrupts described in Section

12.1.2.

12.1.2 Interrupts

The PDMA has 8 interrupts per channel that are used to signal when either a transfer has com-

pleted, or when a transfer error has occurred.

A channel’s interrupts are configured using its Control register described in Section 12.3.1. The

mapping of the FU540-C000 PDMA interrupt signals to the PLIC are described in Chapter 10.

79

Interrupt Purpose

0 Channel 0 transfer complete

1 Channel 0 transfer encountered an error

2 Channel 1 transfer complete

3 Channel 1 transfer encountered an error

4 Channel 2 transfer complete

5 Channel 2 transfer encountered an error

6 Channel 3 transfer complete

7 Channel 3 transfer encountered an error

Table 53: DMA interrupt map

12.2 PDMA Memory Map

The PDMA has an independent set of registers for each channel. Each channel’s registers are

offset by 0x1000 so that the base address for a given PDMA channel is as follows:

Table 54 shows the memory map of the PDMA control registers.

Platform DMA Memory Map (single channel)

Channel Base Address PDMA Base Address + (0x1000 × Channel ID)

Offset Width Attr. Description Notes

0x000 4B RW Control Channel Control Register

0x004 4B RW NextConfig Next transfer type

0x008 8B RW NextBytes Number of bytes to move

0x010 8B RW NextDestination Destination start address

0x018 8B RW NextSource Source start address

0x104 4B RO ExecConfig Active transfer type

0x108 8B RO ExecBytes Number of bytes remaining

0x110 8B RO ExecDestination Destination current address

0x118 8B RO ExecSource Source current address

Table 54: Platform DMA Memory Map

12.3 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Platform DMA

Engine.

12.3.1 Channel Control Register (Control)

The Control register holds the current status of the channel. It can be used to claim a PDMA

channel, initiate a transfer, enable interrupts, and check if a transfer has completed.

Copyright © 2018, SiFive Inc. All rights reserved. 80

Channel Control Register (Control)

Register Offset 0x000 + (0x1000 × Channel ID)

Bits Field

Name

Attr. Rst. Notes

0 claim RW 0x0 Indicates that the channel is is in use. Setting this clears

all of the chanel’s Next registers. This bit can only be

cleared when run is low.

1 run RW 0x0 Setting this bit starts a DMA transfer by copying the Next

registers into their Exec counterparts.

[25:2] Reserved

26 doneIE RW 0x0 Setting this bit will trigger the channel’s Done interrupt

once a transfer is complete.

27 errorIE RW 0x0 Setting this bit will trigger the channel’s Error interrupt

upon receiving a bus error.

[29:28] Reserved

30 done RW 0x0 Indicates that a transfer has completed since the channel

was claimed.

31 error RW 0x0 Indicates that a transfer error has occured since the

channel was claimed.

Table 55: Channel Control Register

12.3.2 Channel Next Configuration Register (NextConfig)

The read-write NextConfig register holds the transfer request type. The wsize and rsize fields

are used to determine the size and alignment of individual PDMA transactions, as a single

PDMA transfer might require multiple transactions. There is an upper-bound of 64 bytes on a

transaction size. These fields are WARL, so the actual size used can be determined by reading

the field after writing the requested size.

The PDMA can be programmed to automatically repeat a transfer by setting the repeat bit field.

If this bit is set, once the transfer completes, the Next registers are automatically copied to the

Exec registers and a new transfer is initiated. The Control.run bit remains set during

“repeated” transactions. To stop repeating transfers, a master can monitor the channel’s Done

interrupt and lower the repeat bit accordingly.

Copyright © 2018, SiFive Inc. All rights reserved. 81

Channel Next Configuration Register (NextConfig)

Register Offset 0x004 + (0x1000 × Channel ID)

Bits Field

Name

Attr. Rst. Notes

[1:0] Reserved

2 repeat RW 0x0 If set, the Exec registers are reloaded from the Next

registers once a transfer is complete. The repeat bit

must be cleared by software for the sequence to stop.

3 order RW 0x0 Enforces strict ordering by only allowing one of each

transfer type in-flight at a time

[25:4] Reserved

[27:24] wsize WARL 0x0 Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is

1 byte, 3 is 8 bytes, 5 is 32 bytes

[31:28] rsize WARL 0x0 Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is

1 byte, 3 is 8 bytes, 5 is 32 bytes

Table 56: Channel Next Configuration Register

12.3.3 Channel Byte Transfer Register (NextBytes)

The read-write NextBytes register holds the number of bytes to be transferred by the channel.

The NextConfig.xsize fields are used to determine the size of the individual transactions that

will be used to transfer the number of bytes specified in this register.

The NextBytes register is a WARL register with a maximum count that can be much smaller

than the physical address size of the machine.

12.3.4 Channel Destination Register (NextDestination)

The read-write NextDestination register holds the physical address of the destination for the

transfer.

12.3.5 Channel Source Address (NextSource)

The read-write NextSource register holds the physical address of the source data for the trans-

fer.

12.3.6 Channel Exec Registers (Exec*)

Each PDMA channel has a set of Exec registers which provide information on the transfer that is

currently executing. These registers are read-only and initialized when Control.run is set.

Upon initialization, the Next registers are copied into the Exec registers and a transfer begins.

Copyright © 2018, SiFive Inc. All rights reserved. 82

The status of the transfer can be monitored by reading the Exec registers. ExecBytes indicates

the number of bytes remaining in a transfer, ExecSource indicates the current source address,

and ExecDestination indicates the current destination address.

Copyright © 2018, SiFive Inc. All rights reserved. 83

Chapter 13

Universal Asynchronous Receiver/

Transmitter (UART)

This chapter describes the operation of the SiFive Universal Asynchronous Receiver/Transmit-

ter (UART).

13.1 UART Overview

The UART peripheral supports the following features:

• 8-N-1 and 8-N-2 formats: 8 data bits, no parity bit, 1 start bit, 1 or 2 stop bits

• 8-entry transmit and receive FIFO buffers with programmable watermark interrupts

• 16× Rx oversampling with 2/3 majority voting per bit

The UART peripheral does not support hardware flow control or other modem control signals, or

synchronous serial data transfers.

13.2 UART Instances in FU540-C000

FU540-C000 contains two UART instances. Their addresses and parameters are shown in

Table 57.

Instance Num-

ber

Address div_width div_init TX FIFO

Depth

RX FIFO

Depth

0 0x10010000 20 289 8 8

1 0x10011000 20 289 8 8

Table 57: UART Instances

84

13.3 Memory Map

The memory map for the UART control registers is shown in Table 58. The UART memory map

has been designed to require only naturally aligned 32-bit memory accesses.

Offset Name Description

0x00 txdata Transmit data register

0x04 rxdata Receive data register

0x08 txctrl Transmit control register

0x0C rxctrl Receive control register

0x10 ie UART interrupt enable

0x14 ip UART interrupt pending

0x18 div Baud rate divisor

13.4 Transmit Data Register (txdata)

Writing to the txdata register enqueues the character contained in the data field to the transmit

FIFO if the FIFO is able to accept new entries. Reading from txdata returns the current value of

the full flag and zero in the data field. The full flag indicates whether the transmit FIFO is

able to accept new entries; when set, writes to data are ignored. A RISC‑V amoswap instruction

can be used to both read the full status and attempt to enqueue data, with a non-zero return

value indicating the character was not accepted.

Transmit Data Register (txdata)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] data RW X Transmit data

[30:8] Reserved

31 full RW X Transmit FIFO full

13.5 Receive Data Register (rxdata)

Reading the rxdata register dequeues a character from the receive FIFO and returns the value

in the data field. The empty flag indicates if the receive FIFO was empty; when set, the data

field does not contain a valid character. Writes to rxdata are ignored.

Table 58: Register offsets within UART memory map

Table 59: Transmit Data Register

Copyright © 2018, SiFive Inc. All rights reserved. 85

Receive Data Register (rxdata)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RO X Receive FIFO empty

13.6 Transmit Control Register (txctrl)

The read-write txctrl register controls the operation of the transmit channel. The txen bit con-

trols whether the Tx channel is active. When cleared, transmission of Tx FIFO contents is sup-

pressed, and the txd pin is driven high.

The nstop field specifies the number of stop bits: 0 for one stop bit and 1 for two stop bits.

The txcnt field specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The txctrl register is reset to 0.

Transmit Control Register (txctrl)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

0 txen RW 0x0 Transmit enable

1 nstop RW 0x0 Number of stop bits

[15:2] Reserved

[18:16] txcnt RW 0x0 Transmit watermark level

[31:19] Reserved

13.7 Receive Control Register (rxctrl)

The read-write rxctrl register controls the operation of the receive channel. The rxen bit con-

trols whether the Rx channel is active. When cleared, the state of the rxd pin is ignored, and no

characters will be enqueued into the Rx FIFO.

The rxcnt field specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The rxctrl register is reset to 0. Characters are enqueued when a zero (low) start bit is seen.

Table 60: Receive Data Register

Table 61: Transmit Control Register

Copyright © 2018, SiFive Inc. All rights reserved. 86

Receive Control Register (rxctrl)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

0 rxen RW 0x0 Receive enable

[15:1] Reserved

[18:16] rxcnt RW 0x0 Receive watermark level

[31:19] Reserved

13.8 Interrupt Registers (ip and ie)

The ip register is a read-only register indicating the pending interrupt conditions, and the read-

write ie register controls which UART interrupts are enabled. ie is reset to 0.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txcnt field of the txctrl register. The pending bit is

cleared when sufficient entries have been enqueued to exceed the watermark.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxcnt field of the rxctrl register. The pending bit is

cleared when sufficient entries have been dequeued to fall below the watermark.

UART Interrupt Enable Register (ie)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark interrupt enable

1 rxwm RW 0x0 Receive watermark interrupt enable

[31:2] Reserved

UART Interrupt Pending Register (ip)

Register Offset 0x14

Bits Field Name Attr. Rst. Description

0 txwm RO X Transmit watermark interrupt pending

1 rxwm RO X Receive watermark interrupt pending

[31:2] Reserved

13.9 Baud Rate Divisor Register (div)

The read-write, div_width-bit div register specifies the divisor used by baud rate generation

for both Tx and Rx channels. The relationship between the input clock and baud rate is given by

the following formula:

Table 62: Receive Control Register

Table 63: UART Interrupt Enable Register

Table 64: UART Interrupt Pending Register

Copyright © 2018, SiFive Inc. All rights reserved. 87

The input clock is the bus clock tlclk. The reset value of the register is set to div_init, which

is tuned to provide a 115200 baud output out of reset given the expected frequency of tlclk.

Table 65 shows divisors for some common core clock rates and commonly used baud rates.

Note that the table shows the divide ratios, which are one greater than the value stored in the

div register.

tlclk (MHz) Target Baud (Hz) Divisor Actual Baud (Hz) Error (%)

500 31250 16000 31250 0

500 115200 4340 115207 0.0064

500 250000 2000 250000 0

500 1843200 271 1845018 0.099

750 31250 24000 31250 0

750 115200 6510 115207 0.0064

750 250000 3000 250000 0

750 1843200 407 1842751 0.024

Table 65: Common baud rates (MIDI=31250, DMX=250000) and required

divide values to achieve them with given bus clock frequencies. The divide val-

ues are one greater than the value stored in the div register.

The receive channel is sampled at 16× the baud rate, and a majority vote over 3 neighboring

bits is used to determine the received value. For this reason, the divisor must be ≥16 for a

receive channel.

Baud Rate Divisor Register (div)

Register Offset 0x18

Bits Field

Name

Attr. Rst. Description

[15:0] div RW X Baud rate divisor. div_width bits wide, and the reset

value is div_init.

[31:16] Reserved

Table 66: Baud Rate Divisor Register

Copyright © 2018, SiFive Inc. All rights reserved. 88

Chapter 14

Pulse Width Modulator (PWM)

This chapter describes the operation of the Pulse-Width Modulation peripheral (PWM).

14.1 PWM Overview

Figure 6 shows an overview of the PWM peripheral. The default configuration described here

has four independent PWM comparators (pwmcmp0–pwmcmp3), but each PWM Peripheral is

parameterized by the number of comparators it has (ncmp). The PWM block can generate multi-

ple types of waveforms on output pins (pwm gpio) and can also be used to generate several

forms of internal timer interrupt. The comparator results are captured in the pwmcmp ip flops

and then fed to the PLIC as potential interrupt sources. The pwmcmp ip outputs are further

processed by an output ganging stage before being fed to the GPIOs.

PWM instances can support comparator precisions (cmpwidth) up to 16 bits, with the example

described here having the full 16 bits. To support clock scaling, the pwmcount register is 15 bits

wider than the comparator precision cmpwidth.

89

Figure 6: PWM Peripheral

14.2 PWM Instances in FU540-C000

FU540-C000 contains two PWM instances. Their addresses and parameters are shown in Table

67.

Instance Number Address ncmp cmpwidth

0 0x10020000 4 16

1 0x10021000 4 16

Table 67: PWM Instances

14.3 PWM Memory Map

The memory map for the PWM peripheral is shown in Table 68.

Copyright © 2018, SiFive Inc. All rights reserved. 90

Offset Name Description

0x00 pwmcfg PWM configuration register

0x04 Reserved

0x08 pwmcount PWM count register

0x0C Reserved

0x10 pwms Scaled PWM count register

0x14 Reserved

0x18 Reserved

0x1C Reserved

0x20 pwmcmp0 PWM 0 compare register

0x24 pwmcmp1 PWM 1 compare register

0x28 pwmcmp2 PWM 2 compare register

0x2C pwmcmp3 PWM 3 compare register

14.4 PWM Count Register (pwmcount)

The PWM unit is based around a counter held in pwmcount. The counter can be read or written

over the TileLink bus. The pwmcount register is bits wide. For example, for

cmpwidth of 16 bits, the counter is held in pwmcount[30:0], and bit 31 of pwmcount returns a

zero when read.

When used for PWM generation, the counter is normally incremented at a fixed rate then reset

to zero at the end of every PWM cycle. The PWM counter is either reset when the scaled

counter pwms reaches the value in pwmcmp0, or is simply allowed to wrap around to zero.

The counter can also be used in one-shot mode, where it disables counting after the first reset.

PWM Count Register (pwmcount)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

[30:0] pwmcount RW X PWM count register. cmpwidth + 15 bits wide.

31 Reserved

Table 68: SiFive PWM memory map, offsets relative to PWM peripheral base address

Table 69: PWM Count Register

Copyright © 2018, SiFive Inc. All rights reserved. 91

14.5 PWM Configuration Register (pwmcfg)

PWM Configuration Register (pwmcfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[3:0] pwmscale RW X PWM Counter scale

[7:4] Reserved

8 pwmsticky RW X PWM Sticky - disallow clearing pwmcmp ip bits

9 pwmzerocmp RW X PWM Zero - counter resets to zero after match

10 pwmdeglitch RW X PWM Deglitch - latch pwmcmp ip within same

cycle

11 Reserved

12 pwmenalways RW 0x0 PWM enable always - run continuously

13 pwmenoneshot RW 0x0 PWM enable one shot - run one cycle

[15:14] Reserved

16 pwmcmp0center RW X PWM0 Compare Center

17 pwmcmp1center RW X PWM1 Compare Center

18 pwmcmp2center RW X PWM2 Compare Center

19 pwmcmp3center RW X PWM3 Compare Center

[23:20] Reserved

24 pwmcmp0gang RW X PWM0/PWM1 Compare Gang

25 pwmcmp1gang RW X PWM1/PWM2 Compare Gang

26 pwmcmp2gang RW X PWM2/PWM3 Compare Gang

27 pwmcmp3gang RW X PWM3/PWM0 Compare Gang

28 pwmcmp0ip RW X PWM0 Interrupt Pending

29 pwmcmp1ip RW X PWM1 Interrupt Pending

30 pwmcmp2ip RW X PWM2 Interrupt Pending

31 pwmcmp3ip RW X PWM3 Interrupt Pending

The pwmcfg register contains various control and status information regarding the PWM periph-

eral, as shown in Table 70.

The pwmen* bits control the conditions under which the PWM counter pwmcount is incremented.

The counter increments by one each cycle only if any of the enabled conditions are true.

If the pwmenalways bit is set, the PWM counter increments continuously. When pwmenoneshot

is set, the counter can increment but pwmenoneshot is reset to zero once the counter resets,

disabling further counting (unless pwmenalways is set). The pwmenoneshot bit provides a way

for software to generate a single PWM cycle then stop. Software can set the pwmenoneshot

again at any time to replay the one-shot waveform. The pwmen* bits are reset at wakeup reset,

which disables the PWM counter and saves power.

Table 70: PWM Configuration Register

Copyright © 2018, SiFive Inc. All rights reserved. 92

The 4-bit pwmscale field scales the PWM counter value before feeding it to the PWM compara-

tors. The value in pwmscale is the bit position within the pwmcount register of the start of a

cmpwidth-bit pwms field. A value of 0 in pwmscale indicates no scaling, and pwms would then be

equal to the low cmpwidth bits of pwmcount. The maximum value of 15 in pwmscale corre-

sponds to dividing the clock rate by 215, so for an input bus clock of 16 MHz, the LSB of pwms

will increment at 488.3 Hz.

The pwmzerocmp bit, if set, causes the PWM counter pwmcount to be automatically reset to zero

one cycle after the pwms counter value matches the compare value in pwmcmp0. This is normally

used to set the period of the PWM cycle. This feature can also be used to implement periodic

counter interrupts, where the period is independent of interrupt service time.

14.6 Scaled PWM Count Register (pwms)

The Scaled PWM Count Register pwms reports the cmpwidth-bit portion of pwmcount which

starts at pwmscale, and is what is used for comparison against the pwmcmp registers.

Scaled PWM Count Register (pwms)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[15:0] pwms RW X Scaled PWM count register. cmpwidth bits wide.

[31:16] Reserved

14.7 PWM Compare Registers (pwmcmp0–pwmcmp3)

PWM 0 Compare Register (pwmcmp0)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp0 RW X PWM 0 Compare Value

[31:16] Reserved

PWM 1 Compare Register (pwmcmp1)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp1 RW X PWM 1 Compare Value

[31:16] Reserved

Table 71: Scaled PWM Count Register

Table 72: PWM 0 Compare Register

Table 73: PWM 1 Compare Register

Copyright © 2018, SiFive Inc. All rights reserved. 93

PWM 2 Compare Register (pwmcmp2)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp2 RW X PWM 2 Compare Value

[31:16] Reserved

PWM 3 Compare Register (pwmcmp3)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp3 RW X PWM 3 Compare Value

[31:16] Reserved

The primary use of the ncmp PWM compare registers is to define the edges of the PWM wave-

forms within the PWM cycle.

Each compare register is a cmpwdith-bit value against which the current pwms value is com-

pared every cycle. The output of each comparator is high whenever the value of pwms is greater

than or equal to the corresponding pwmcmp .

If the pwmzerocomp bit is set, when pwms reaches or exceeds pwmcmp0, pwmcount is cleared to

zero and the current PWM cycle is completed. Otherwise, the counter is allowed to wrap

around.

14.8 Deglitch and Sticky Circuitry

To avoid glitches in the PWM waveforms when changing pwmcmp register values, the

pwmdeglitch bit in pwmcfg can be set to capture any high output of a PWM comparator in a

sticky bit (pwmcmp ip for comparator) and prevent the output falling again within the same

PWM cycle. The pwmcmp ip bits are only allowed to change at the start of the next PWM cycle.

Note

The pwmcmp0ip bit will only be high for one cycle when pwmdeglitch and pwmzerocmp are

set where pwmcmp0 is used to define the PWM cycle, but can be used as a regular PWM

edge otherwise.

If pwmdeglitch is set, but pwmzerocmp is clear, the deglitch circuit is still operational but is now

triggered when pwms contains all 1s and will cause a carry out of the high bit of the pwms incre-

menter just before the counter wraps to zero.

Table 74: PWM 2 Compare Register

Table 75: PWM 3 Compare Register

Copyright © 2018, SiFive Inc. All rights reserved. 94

The pwmsticky bit disallows the pwmcmp ip registers from clearing if they are already set and

is used to ensure interrupts are seen from the pwmcmp ip bits.

14.9 Generating Left- or Right-Aligned PWM Waveforms

Figure 7: Basic right-aligned PWM waveforms. All possible base waveforms are shown for a

7-clock PWM cycle (pwmcmp0=6). The waveforms show the single-cycle delay caused by regis-

tering the comparator outputs in the pwmcmp ip bits. The signals can be inverted at the GPIOs

to generate left-aligned waveforms.

Figure 7 shows the generation of various base PWM waveforms. The figure illustrates that if

pwmcmp0 is set to less than the maximum count value (6 in this case), it is possible to generate

both 100% (pwmcmp 0) and 0% (pwmcmp pwmcmp0) right-aligned duty cycles using the

other comparators. The pwmcmp ip bits are routed to the GPIO pads, where they can be

optionally and individually inverted, thereby creating left-aligned PWM waveforms (high at

beginning of cycle).

14.10 Generating Center-Aligned (Phase-Correct) PWM

Waveforms

The simple PWM waveforms in Figure 7 shift the phase of the waveform along with the duty

cycle. A per-comparator pwmcmp center bit in pwmcfg allows a single PWM comparator to

generate a center-aligned symmetric duty-cycle as shown in Figure 8. The pwmcmp center bit

changes the comparator to compare with the bitwise inverted pwms value whenever the MSB of

pwms is high.

Copyright © 2018, SiFive Inc. All rights reserved. 95

This technique provides symmetric PWM waveforms but only when the PWM cycle is at the

largest supported size. At a 16 MHz bus clock rate with 16-bit precision, this limits the fastest

PWM cycle to 244 Hz, or 62.5 kHz with 8-bit precision. Higher bus clock rates allow proportion-

ally faster PWM cycles using the single comparator center-aligned waveforms. This technique

also reduces the effective width resolution by a factor of 2.

pwms pwmscenter

000 000

001 001

010 010

011 011

100 011

101 010

110 001

111 000

Figure 8: Center-aligned PWM waveforms generated from one comparator. All possible wave-

forms are shown for a 3-bit PWM precision. The signals can be inverted at the GPIOs to gener-

ate opposite-phase waveforms.

When a comparator is operating in center mode, the deglitch circuit allows one 0-to-1 transition

during the first half of the cycle and one 1-to-0 transition during the second half of the cycle.

14.11 Generating Arbitrary PWM Waveforms using Ganging

A comparator can be ganged together with its next-highest-numbered neighbor to generate arbi-

trary PWM pulses. When the pwmcmp gang bit is set, comparator fires and raises its

pwm gpio signal. When comparator (or pwmcmp0 for pwmcmp3) fires, the pwm gpio out-

put is reset to zero.

Table 76: Illustration of how count value is inverted before presentation to comparator when

pwmcmp center is selected, using a 3-bit pwms value.

Copyright © 2018, SiFive Inc. All rights reserved. 96

14.12 Generating One-Shot Waveforms

The PWM peripheral can be used to generate precisely timed one-shot pulses by first initializing

the other parts of pwmcfg then writing a 1 to the pwmenoneshot bit. The counter will run for one

PWM cycle, then once a reset condition occurs, the pwmenoneshot bit is reset in hardware to

prevent a second cycle.

14.13 PWM Interrupts

The PWM can be configured to provide periodic counter interrupts by enabling auto-zeroing of

the count register when a comparator 0 fires (pwmzerocmp=1). The pwmsticky bit should also

be set to ensure interrupts are not forgotten while waiting to run a handler.

The interrupt pending bits pwmcmp ip can be cleared down using writes to the pwmcfg register.

The PWM peripheral can also be used as a regular timer with no counter reset (pwmzerocmp=0),

where the comparators are now used to provide timer interrupts.

Copyright © 2018, SiFive Inc. All rights reserved. 97

Chapter 15

Inter-Integrated Circuit (I²C) Master

Interface

The SiFive Inter-Integrated Circuit (I²C) Master Interface is based on OpenCores® I²C Master

Core.

Download the original documentation at https://opencores.org/project,i2c.

All I²C control register addresses are 4-byte aligned.

15.1 I²C Instance in FU540-C000

FU540-C000 contains one I²C instance. Its address is shown in Table 77.

Instance Number Address

0 0x10030000

Table 77: I²C Instance

98

https://opencores.org/project,i2c

Chapter 16

Serial Peripheral Interface (SPI)

This chapter describes the operation of the SiFive Serial Peripheral Interface (SPI) controller.

16.1 SPI Overview

The SPI controller supports master-only operation over the single-lane, dual-lane, and quad-

lane protocols. The baseline controller provides a FIFO-based interface for performing pro-

grammed I/O. Software initiates a transfer by enqueuing a frame in the transmit FIFO; when the

transfer completes, the slave response is placed in the receive FIFO.

In addition, a SPI controller can implement a SPI flash read sequencer, which exposes the

external SPI flash contents as a read/execute-only memory-mapped device. Such controllers

are reset to a state that allows memory-mapped reads, under the assumption that the input

clock rate is less than 100 MHz and the external SPI flash device supports the common Win-

bond/Numonyx serial read (0x03) command. Sequential accesses are automatically combined

into one long read command for higher performance.

The fctrl register controls switching between the memory-mapped and programmed-I/O

modes, if applicable. While in programmed-I/O mode, memory-mapped reads do not access the

external SPI flash device and instead return 0 immediately. Hardware interlocks ensure that the

current transfer completes before mode transitions and control register updates take effect.

16.2 SPI Instances in FU540-C000

FU540-C000 contains three SPI instances. Their addresses and parameters are shown in Table

78.

99

Instance Number Flash Controller Address cs_width div_width

QSPI0 Y 0x10040000 1 16

QSPI1 Y 0x10140000 4 16

QSPI2 N 0x10050000 1 16

Table 78: SPI Instances

16.3 Memory Map

The memory map for the SPI control registers is shown in Table 79. The SPI memory map has

been designed to require only naturally-aligned 32-bit memory accesses.

Copyright © 2018, SiFive Inc. All rights reserved. 100

Offset Name Description

0x00 sckdiv Serial clock divisor

0x04 sckmode Serial clock mode

0x08 Reserved

0x0C Reserved

0x10 csid Chip select ID

0x14 csdef Chip select default

0x18 csmode Chip select mode

0x1C Reserved

0x20 Reserved

0x24 Reserved

0x28 delay0 Delay control 0

0x2C delay1 Delay control 1

0x30 Reserved

0x34 Reserved

0x38 Reserved

0x3C Reserved

0x40 fmt Frame format

0x44 Reserved

0x48 txdata Tx FIFO Data

0x4C rxdata Rx FIFO data

0x50 txmark Tx FIFO watermark

0x54 rxmark Rx FIFO watermark

0x58 Reserved

0x5C Reserved

0x60 fctrl SPI flash interface control*

0x64 ffmt SPI flash instruction format*

0x68 Reserved

0x6C Reserved

0x70 ie SPI interrupt enable

0x74 ip SPI interrupt pending

16.4 Serial Clock Divisor Register (sckdiv)

The sckdiv is a div_width-bit register that specifies the divisor used for generating the serial

clock (SCK). The relationship between the input clock and SCK is given by the following for-

mula:

Table 79: Register offsets within the SPI memory map. Registers marked * are present only on

controllers with the direct-map flash interface.

Copyright © 2018, SiFive Inc. All rights reserved. 101

The input clock is the bus clock tlclk. The reset value of the div field is 0x3.

Serial Clock Divisor Register (sckdiv)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[11:0] div RW 0x3 Divisor for serial clock. div_width bits wide.

[31:12] Reserved

16.5 Serial Clock Mode Register (sckmode)

The sckmode register defines the serial clock polarity and phase. Table 82 and Table 83

describe the behavior of the pol and pha fields, respectively. The reset value of sckmode is 0.

Serial Clock Mode Register (sckmode)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

0 pha RW 0x0 Serial clock phase

1 pol RW 0x0 Serial clock polarity

[31:2] Reserved

Value Description

0 Inactive state of SCK is logical 0

1 Inactive state of SCK is logical 1

Value Description

0 Data is sampled on the leading edge of SCK and shifted on the trailing edge of SCK

1 Data is shifted on the leading edge of SCK and sampled on the trailing edge of SCK

16.6 Chip Select ID Register (csid)

The csid is a -bit register that encodes the index of the CS pin to be toggled

by hardware chip select control. The reset value is 0x0.

Table 80: Serial Clock Divisor Register

Table 81: Serial Clock Mode Register

Table 82: Serial Clock Polarity

Table 83: Serial Clock Phase

Copyright © 2018, SiFive Inc. All rights reserved. 102

Chip Select ID Register (csid)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[31:0] csid RW 0x0 Chip select ID. bits wide.

16.7 Chip Select Default Register (csdef)

The csdef register is a cs_width-bit register that specifies the inactive state (polarity) of the CS

pins. The reset value is high for all implemented CS pins.

Chip Select Default Register (csdef)

Register Offset 0x14

Bits Field

Name

Attr. Rst. Description

[31:0] csdef RW 0x1 Chip select default value. cs_width bits wide, reset to

all-1s.

16.8 Chip Select Mode Register (csmode)

The csmode register defines the hardware chip select behavior as described in Table 86. The

reset value is 0x0 (AUTO). In HOLD mode, the CS pin is deasserted only when one of the fol-

lowing conditions occur:

• A different value is written to csmode or csid.

• A write to csdef changes the state of the selected pin.

• Direct-mapped flash mode is enabled.

Chip Select Mode Register (csmode)

Register Offset 0x18

Bits Field Name Attr. Rst. Description

[1:0] mode RW 0x0 Chip select mode

[31:2] Reserved

Value Name Description

0 AUTO Assert/deassert CS at the beginning/end of each frame

2 HOLD Keep CS continuously asserted after the initial frame

3 OFF Disable hardware control of the CS pin

Table 84: Chip Select ID Register

Table 85: Chip Select Default Register

Table 86: Chip Select Mode Register

Table 87: Chip Select Modes

Copyright © 2018, SiFive Inc. All rights reserved. 103

16.9 Delay Control Registers (delay0 and delay1)

The delay0 and delay1 registers allow for the insertion of arbitrary delays specified in units of

one SCK period.

The cssck field specifies the delay between the assertion of CS and the first leading edge of

SCK. When sckmode.pha = 0, an additional half-period delay is implicit. The reset value is 0x1.

The sckcs field specifies the delay between the last trailing edge of SCK and the deassertion of

CS. When sckmode.pha = 1, an additional half-period delay is implicit. The reset value is 0x1.

The intercs field specifies the minimum CS inactive time between deassertion and assertion.

The reset value is 0x1.

The interxfr field specifies the delay between two consecutive frames without deasserting

CS. This is applicable only when sckmode is HOLD or OFF. The reset value is 0x0.

Delay Control Register 0 (delay0)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[7:0] cssck RW 0x1 CS to SCK Delay

[15:8] Reserved

[23:16] sckcs RW 0x1 SCK to CS Delay

[31:24] Reserved

Delay Control Register 1 (delay1)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

[7:0] intercs RW 0x1 Minimum CS inactive time

[15:8] Reserved

[23:16] interxfr RW 0x0 Maximum interframe delay

[31:24] Reserved

16.10 Frame Format Register (fmt)

The fmt register defines the frame format for transfers initiated through the programmed-I/O

(FIFO) interface. Table 91, Table 92, and Table 93 describe the proto, endian, and dir fields,

respectively. The len field defines the number of bits per frame, where the allowed range is 0 to

8 inclusive.

Table 88: Delay Control Register 0

Table 89: Delay Control Register 1

Copyright © 2018, SiFive Inc. All rights reserved. 104

For flash-enabled SPI controllers, the reset value is 0x0008_0008, corresponding to proto =

single, dir = Tx, endian = MSB, and len = 8. For non-flash-enabled SPI controllers, the reset

value is 0x0008_0000, corresponding to proto = single, dir = Rx, endian = MSB, and len = 8.

Frame Format Register (fmt)

Register Offset 0x40

Bits Field

Name

Attr. Rst. Description

[1:0] proto RW 0x0 SPI protocol

2 endian RW 0x0 SPI endianness

3 dir RW X SPI I/O direction. This is reset to 1 for flash-enabled SPI

controllers, 0 otherwise.

[15:4] Reserved

[19:16] len RW 0x8 Number of bits per frame

[31:20] Reserved

Value Description Data Pins

0 Single DQ0 (MOSI), DQ1 (MISO)

1 Dual DQ0, DQ1

2 Quad DQ0, DQ1, DQ2, DQ3

Value Description

0 Transmit most-significant bit (MSB) first

1 Transmit least-significant bit (LSB) first

Value Description

0 Rx: For dual and quad protocols, the DQ pins are tri-stated. For the single protocol,

the DQ0 pin is driven with the transmit data as normal.

1 Tx: The receive FIFO is not populated.

16.11 Transmit Data Register (txdata)

Writing to the txdata register loads the transmit FIFO with the value contained in the data field.

For fmt.len < 8, values should be left-aligned when fmt.endian = MSB and right-aligned

when fmt.endian = LSB.

Table 90: Frame Format Register

Table 91: SPI Protocol. Unused DQ pins are tri-stated.

Table 92: SPI Endianness

Table 93: SPI I/O Direction

Copyright © 2018, SiFive Inc. All rights reserved. 105

The full flag indicates whether the transmit FIFO is ready to accept new entries; when set,

writes to txdata are ignored. The data field returns 0x0 when read.

Transmit Data Register (txdata)

Register Offset 0x48

Bits Field Name Attr. Rst. Description

[7:0] data RW 0x0 Transmit data

[30:8] Reserved

31 full RO X FIFO full flag

16.12 Receive Data Register (rxdata)

Reading the rxdata register dequeues a frame from the receive FIFO. For fmt.len < 8, values

are left-aligned when fmt.endian = MSB and right-aligned when fmt.endian = LSB.

The empty flag indicates whether the receive FIFO contains new entries to be read; when set,

the data field does not contain a valid frame. Writes to rxdata are ignored.

Receive Data Register (rxdata)

Register Offset 0x4C

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RW X FIFO empty flag

16.13 Transmit Watermark Register (txmark)

The txmark register specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The reset value is 1 for flash-enabled SPI controllers, and 0 for non-flash-enabled SPI con-

trollers.

Transmit Watermark Register (txmark)

Register Offset 0x50

Bits Field

Name

Attr. Rst. Description

[2:0] txmark RW X Transmit watermark. The reset value is 1 for flash-enabled

controllers, 0 otherwise.

[31:3] Reserved

Table 94: Transmit Data Register

Table 95: Receive Data Register

Table 96: Transmit Watermark Register

Copyright © 2018, SiFive Inc. All rights reserved. 106

16.14 Receive Watermark Register (rxmark)

The rxmark register specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The reset value is 0x0.

Receive Watermark Register (rxmark)

Register Offset 0x54

Bits Field Name Attr. Rst. Description

[2:0] rxmark RW 0x0 Receive watermark

[31:3] Reserved

16.15 SPI Interrupt Registers (ie and ip)

The ie register controls which SPI interrupts are enabled, and ip is a read-only register indicat-

ing the pending interrupt conditions. ie is reset to zero. See Table 98.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txmark register. The pending bit is cleared when sufficient

entries have been enqueued to exceed the watermark. See Table 99.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxmark register. The pending bit is cleared when suffi-

cient entries have been dequeued to fall below the watermark. See Table 99.

SPI Interrupt Enable Register (ie)

Register Offset 0x70

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark enable

1 rxwm RW 0x0 Receive watermark enable

[31:2] Reserved

SPI Watermark Interrupt Pending Register (ip)

Register Offset 0x74

Bits Field Name Attr. Rst. Description

0 txwm RO 0x0 Transmit watermark pending

1 rxwm RO 0x0 Receive watermark pending

[31:2] Reserved

Table 97: Receive Watermark Register

Table 98: SPI Interrupt Enable Register

Table 99: SPI Watermark Interrupt Pending Register

Copyright © 2018, SiFive Inc. All rights reserved. 107

16.16 SPI Flash Interface Control Register (fctrl)

When the en bit of the fctrl register is set, the controller enters direct memory-mapped SPI

flash mode. Accesses to the direct-mapped memory region causes the controller to automati-

cally sequence SPI flash reads in hardware. The reset value is 0x1. See Table 100.

SPI Flash Interface Control Register (fctrl)

Register Offset 0x60

Bits Field Name Attr. Rst. Description

0 en RW 0x1 SPI Flash Mode Select

[31:1] Reserved

16.17 SPI Flash Instruction Format Register (ffmt)

The ffmt register defines the format of the SPI flash read instruction issued by the controller

when the direct-mapped memory region is accessed while in SPI flash mode.

An instruction consists of a command byte followed by a variable number of address bytes,

dummy cycles (padding), and data bytes. Table 101 describes the function and reset value of

each field.

SPI Flash Instruction Format Register (ffmt)

Register Offset 0x64

Bits Field Name Attr. Rst. Description

0 cmd_en RW 0x1 Enable sending of command

[3:1] addr_len RW 0x3 Number of address bytes (0 to 4)

[7:4] pad_cnt RW 0x0 Number of dummy cycles

[9:8] cmd_proto RW 0x0 Protocol for transmitting command

[11:10] addr_proto RW 0x0 Protocol for transmitting address and padding

[13:12] data_proto RW 0x0 Protocol for receiving data bytes

[15:14] Reserved

[23:16] cmd_code RW 0x3 Value of command byte

[31:24] pad_code RW 0x0 First 8 bits to transmit during dummy cycles

Table 100: SPI Flash Interface Control Register

Table 101: SPI Flash Instruction Format Register

Copyright © 2018, SiFive Inc. All rights reserved. 108

Chapter 17

General Purpose Input/Output Controller

(GPIO)

This chapter describes the operation of the General Purpose Input/Output Controller (GPIO) on

the FU540-C000. The GPIO controller is a peripheral device mapped in the internal memory

map. It is responsible for low-level configuration of actual GPIO pads on the device (direction,

pull up-enable, etc.), as well as selecting between various sources of the controls for these sig-

nals. The GPIO controller allows separate configuration of each of ngpio GPIO bits.

Atomic operations such as toggles are natively possible with the RISC-V 'A' extension.

17.1 GPIO Instance in FU540-C000

FU540-C000 contains one GPIO instance. Its address and parameters are shown in Table 102.

Instance Number Address ngpio

0 0x10060000 16

Table 102: GPIO Instance

17.2 Memory Map

The memory map for the GPIO control registers is shown in Table 103. The GPIO memory map

has been designed to require only naturally-aligned 32-bit memory accesses. Each register is

ngpio bits wide.

109

Offset Name Description

0x00 input_val Pin value

0x04 input_en Pin input enable*

0x08 output_en Pin output enable*

0x0C output_val Output value

0x10 pue Internal pull-up enable*

0x14 ds Pin drive strength

0x18 rise_ie Rise interrupt enable

0x1C rise_ip Rise interrupt pending

0x20 fall_ie Fall interrupt enable

0x24 fall_ip Fall interrupt pending

0x28 high_ie High interrupt enable

0x2C high_ip High interrupt pending

0x30 low_ie Low interrupt enable

0x34 low_ip Low interrupt pending

0x40 out_xor Output XOR (invert)

17.3 Input / Output Values

The GPIO can be configured on a bitwise fashion to represent inputs and/or outputs, as set by

the input_en and output_en registers. Writing to the output_val register updates the bits

regardless of the tristate value. Reading the output_val register returns the written value.

Reading the input_val register returns the actual value of the pin gated by input_en.

17.4 Interrupts

A single interrupt bit can be generated for each GPIO bit. The interrupt can be driven by rising

or falling edges, or by level values, and interrupts can be enabled for each GPIO bit individually.

Inputs are synchronized before being sampled by the interrupt logic, so the input pulse width

must be long enough to be detected by the synchronization logic.

To enable an interrupt, set the corresponding bit in the rise_ie and/or fall_ie to 1. If the cor-

responding bit in rise_ip or fall_ip is set, an interrupt pin is raised.

Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.

The interrupt pins may be routed to the PLIC or directly to local interrupts.

Table 103: GPIO Peripheral Register Offsets. Only naturally aligned 32-bit memory accesses

are supported. Registers marked with an * are asynchronously reset to 0. All other registers are

synchronously reset to 0.

Copyright © 2018, SiFive Inc. All rights reserved. 110

17.5 Internal Pull-Ups

When configured as inputs, each pin has an internal pull-up which can be enabled by software.

At reset, all pins are set as inputs, and pull-ups are disabled.

17.6 Drive Strength

On the FU540-C000, the drive strength registers do not control anything about the GPIO,

although the registers can be read and written.

17.7 Output Inversion

When configured as an output, the software-writable out_xor register is combined with the out-

put to invert it.

Copyright © 2018, SiFive Inc. All rights reserved. 111

Chapter 18

One-Time Programmable Memory

Interface (OTP)

This chapter describes the operation of the SiFive controller for the eMemory

EG004K32TQ028XW01 NeoFuse® One-Time-Programmable (OTP) memory.

18.1 OTP Overview

OTP is one-time programmable memory. Each bit starts out as 1 and can be written to 0 by

using the controller interface. The OTP is laid out as a 4096×32 bit array.

The controller provides a simple register-based interface to write the inputs of the macro and

read its outputs. All timing and sequencing are the responsibility of the driver software.

18.2 Memory Map

The memory map for the OTP control registers is shown in Table 104. The OTP memory map

has been designed to require only naturally-aligned 32-bit memory accesses. For further infor-

mation about the functionality and timing requirements of each of the inputs/outputs, refer to the

datasheet for eMemory EG004K32TQ028XW01.

112

Offset Name Description

0x00 PA Address input

0x04 PAIO Programming address input

0x08 PAS Program redundancy cell selection input

0x0C PCE OTP Macro enable input

0x10 PCLK Clock input

0x14 PDIN Write data input

0x18 PDOUT Read Data output

0x1C PDSTB Deep standby mode enable input (active low)

0x20 PPROG Program mode enable input

0x24 PTC Test column enable input

0x28 PTM Test mode enable input

0x2C PTM_REP Repair function test mode enable input

0x30 PTR Test row enable input

0x34 PTRIM Repair function enable input

0x38 PWE Write enable input (defines program cycle)

18.3 Detailed Register Fields

Each register is described in more detail below.

PA: Address input (PA)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[11:0] PA RW 0x0 Address input

[31:12] Reserved

PAIO: Programming address input (PAIO)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[4:0] PAIO RW 0x0 Programming address input

[31:5] Reserved

Table 104: Register offsets within the eMemory OTP Controller memory map

Table 105: PA: Address input

Table 106: PAIO: Programming address input

Copyright © 2018, SiFive Inc. All rights reserved. 113

PAS: Program redundancy cell selection input (PAS)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

0 PAS RW 0x0 Program redundancy cell selection input

[31:1] Reserved

PCE: OTP Macro enable input (PCE)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

0 PCE RW 0x0 OTP Macro enable input

[31:1] Reserved

PCLK: Clock input (PCLK)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

0 PCLK RW 0x0 Clock input

[31:1] Reserved

PDIN: Write data input (PDIN)

Register Offset 0x14

Bits Field Name Attr. Rst. Description

0 PDIN RW 0x0 Write data input

[31:1] Reserved

PDOUT: Read Data output (PDOUT)

Register Offset 0x18

Bits Field Name Attr. Rst. Description

[31:0] PDOUT RO X Read Data output

Table 107: PAS: Program redundancy cell selection input

Table 108: PCE: OTP Macro enable input

Table 109: PCLK: Clock input

Table 110: PDIN: Write data input

Table 111: PDOUT: Read Data output

Copyright © 2018, SiFive Inc. All rights reserved. 114

PDSTB: Deep standby mode enable input (active low) (PDSTB)

Register Offset 0x1C

Bits Field Name Attr. Rst. Description

0 PDSTB RW 0x0 Deep standby mode enable input (active low)

[31:1] Reserved

PPROG: Program mode enable input (PPROG)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

0 PPROG RW 0x0 Program mode enable input

[31:1] Reserved

PTC: Test column enable input (PTC)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

0 PTC RW 0x0 Test column enable input

[31:1] Reserved

PTM: Test mode enable input (PTM)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[2:0] PTM RW 0x0 Test mode enable input

[31:3] Reserved

PTM_REP: Repair function test mode enable input (PTM_REP)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

0 PTM_REP RW 0x0 Repair function test mode enable input

[31:1] Reserved

Table 112: PDSTB: Deep standby mode enable input (active low)

Table 113: PPROG: Program mode enable input

Table 114: PTC: Test column enable input

Table 115: PTM: Test mode enable input

Table 116: PTM_REP: Repair function test mode enable input

Copyright © 2018, SiFive Inc. All rights reserved. 115

PTR: Test row enable input (PTR)

Register Offset 0x30

Bits Field Name Attr. Rst. Description

0 PTR RW 0x0 Test row enable input

[31:1] Reserved

PTRIM: Repair function enable input (PTRIM)

Register Offset 0x34

Bits Field Name Attr. Rst. Description

0 PTRIM RW 0x0 Repair function enable input

[31:1] Reserved

PWE: Write enable input (defines program cycle) (PWE)

Register Offset 0x38

Bits Field Name Attr. Rst. Description

0 PWE RW 0x0 Write enable input (defines program cycle)

[31:1] Reserved

18.4 OTP Contents in the FU540-C000

SiFive reserves the first 1 KiB of the 16 KiB OTP memory for internal use.

The current usage is shown in Table 120, with an example where the stored serial number is

0x00000001:

32-bit Offset serial serial_n

0xFC 0x1 0xffffffe

0xFE 0xffffffff 0xffffffff

Table 120: Initial OTP Contents for example Serial Number 0x1

The serial number stored in OTP can be found using this method:

for (i = 0xfe; i > 0; i -= 2)

serial = read_otp_word(i);

serial_n = read_otp_word(i+);

if (serial == ~serial_n)

break;

Table 117: PTR: Test row enable input

Table 118: PTRIM: Repair function enable input

Table 119: PWE: Write enable input (defines program cycle)

Copyright © 2018, SiFive Inc. All rights reserved. 116

Chapter 19

Gigabit Ethernet Subsystem

This chapter describes the operation of Gigabit Ethernet on the FU540-C000.

19.1 Gigabit Ethernet Overview

FU540-C000 integrates a single Cadence GEMGXL Gigabit Ethernet Controller that implements

full-duplex 10/100/1000 Mb/s Ethernet MAC as defined in IEEE Standard for Ethernet (IEEE

Std. 802.3-2008). The Gigabit Ethernet controller interfaces to an external PHY using Gigabit

Media Independent Interface (GMII).

Figure 9: Gigabit Ethernet Subsystem architecture.

The GEMGXL is parameterized to support the following features:

• IEEE Standard 802.3-2008 supporting 10/100/1000 Mbps operation

• GMII/MII interface

117

• MDIO interface for physical layer management of external PHY

• Flow Control. Full duplex mode and half duplex operation with TX/RX of pause frames

• Receive Traffic Policing. Ability to drop frames

• Scatter-gather 32-bit wide bus mastering DMA and 64-bit addresses

• 128-bit bit wide 4 KiB deep DMA RX/TX packet buffers with cut-through operation mode

• Interrupt generation to signal TX/RX completion, errors and wake-up

• IPv4 and IPv6 checksum offload

• Automatic pad and cyclic redundancy check (CRC) generation on transmit frames

• Jumbo frames up to 10240 bytes

• 128-bit wide 4 KiB deep RX/TX packet buffers

• 4 source/destination frame filters for use in Wake on LAN and Pause Frame Handling

• Ethernet loopback mode

• IEEE 1588 standard for precision clock synchronization protocol is not supported

The GEMGXL Management block enables software to switch the clock used for transmit logic

for 10/100 mode (MII) versus gigabit (GMII) mode. In 10/100 MII mode, transmit logic in the

GEMGXL must be clocked from a free-running clock (TX_CLK) generated by the external PHY.

In gigabit GMII mode, the GEMGXL, not the external PHY, must generate the 125 MHz transmit

clock towards the PHY.

The Gigabit Ethernet Subsystem operates on a separate clock.

19.2 Memory Map

This section presents an overview of the GEMGXL control registers.

19.2.1 GEMGXL Management Block Control Registers (0x100A_0000–0x100A_FFFF)

GEMGXL Management TX Clock Select Register

Base Address 0x100A_0000

Bits Field Name Rst. Description

0 tx_clk_sel 0x0 GEMGXL TX clock operation mode:

0 = GMII mode. Use 125 MHz gemgxlclk from PRCI in TX logic

and output clock on GMII output signal GTX_CLK

1 = MII mode. Use MII input signal TX_CLK in TX logic

Table 121: GEMGXL Management TX Clock Select Register

Copyright © 2018, SiFive Inc. All rights reserved. 118

GEMGXL Management Control Status Speed Mode Register

Base Address 0x100A_0020

Bits Field Name Rst. Description

[3:0] control_status_speed_mode 0x0 4’b0000 = 10 Mbps Ethernet operation using

MII interface

4’b0001 = 100 Mbps Ethernet operation

using MII interface

4’b001x = 1000 Mbps Ethernet operation

using GMII interface

Table 122: GEMGXL Management Control Status Speed Mode Register

19.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)

The complete memory map of the GEMGXL device is described in the Cadence GEMGXL macb

Linux driver header:

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb.h

19.3 Initialization and Software Interface

Clocking and reset is initialized in the First Stage Boot Loader (FSBL) as described in Chapter

7.

The Gigabit Ethernet Subsystem is controlled by the Cadence GEMGXL macb Linux driver:

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb_main.c

The switching of GEMGXL TXCLK by the GEMGXL Management Block is controlled by a sec-

ond Linux driver:

https://github.com/riscv/riscv-linux/blob/riscv-linux-4.15/drivers/clk/sifive/gemgxl-mgmt.c

Copyright © 2018, SiFive Inc. All rights reserved. 119

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb.h
https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb_main.c
https://github.com/riscv/riscv-linux/blob/riscv-linux-4.15/drivers/clk/sifive/gemgxl-mgmt.c

Chapter 20

DDR Subsystem

This chapter describes the operation of the DDR subsystem on the FU540-C000.

20.1 DDR Subsystem Overview

The DDR subsystem supports external 32/64-bit wide DDR3, DDR3L, or DDR4 DRAM with

optional ECC. The maximum data rate is 2400 MT/s. The maximum memory depth is 128 GiB

implemented as 1 or 2 ranks.

Figure 10: DDR Subsystem architecture

The DDR Subsystem consists of three main blocks:

1. DDR PHY. Analog PADs. Digital high-speed training and alignment circuits.

2. DDR Controller. Generation of DDR Read/Write/Refresh commands to PHY DFI

interface.

120

3. Bus Blocker. Prevents memory accesses to the DDR controller that are within the

maximum DDR 128 GiB range but beyond the range of the attached DRAM

devices.

The DDR Subsystem operates on a separate clock, ddrctrlclk, running at 1/4 DDR data rate

with clock domain crossers to the TileLink clock TLCLK.

There are three TileLink slave interfaces:

1. DDR Memory Access Interface. A 256-bit wide TileLink slave node.

2. Bus Blocker Control Register Interface. A 64-bit wide TileLink slave node.

3. DDR Controller/Phy Control Register Interface A 64-bit wide TileLink slave node.

A single interrupt output is connected to the PLIC.

20.2 Memory Map

20.2.1 Bus Blocker Control Registers (0x100B_8000–0x100B_8FFF)

The Bus Blocker contains a single control register that enables/disables it and defines the upper

address of attached DDR.

DDR Subsystem Bus Blocker Control Register 0

Base Address 0x100B_8000

Bits Field Name Rst. Description

[53:0] address [55:2] 0x0 Upper DDR address bits [55:2]

[59:56] enable_disable 0x0 0xF to enable Bus Blocker.

This register can only be toggled once

after reset.

Table 123: DDR Subsystem Bus Blocker Control Register 0

20.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF)

16 KiB of memory-mapped registers control the DDR controller and the PHY mode of operation.

For example, memory timing settings, PAD mode configuration, initialization, and training.

The First Stage Boot Loader (FSBL) directly computes the contents of a subset of these regis-

ters as part of the DDR Reset and Initialization process. These registers are documented below.

Please contact SiFive directly to determine the complete register settings for your application.

Copyright © 2018, SiFive Inc. All rights reserved. 121

DDR Controller Control Register 0

Base Address 0x100B_0000

Bits Field Name Rst. Description

0 start 0x0 Start initialization of DDR Subsystem

[11:8] dram_class 0x0 DDR3:0x6 DDR4:0xA

Table 124: DDR Controller Control Register 0

DDR Controller Control Register 19

Base Address 0x100B_004C

Bits Field Name Rst. Description

[18:16] bstlen 0x2 Encoded burst length.

BL1=0x1 BL2=0x2 BL4=0x3 BL8=3

Table 125: DDR Controller Control Register 19

DDR Controller Control Register 21

Base Address 0x100B_0054

Bits Field Name Rst. Description

0 optimal_rmodew_en 0 Enables DDR controller optimized

Read Modify Write logic

Table 126: DDR Controller Control Register 21

DDR Controller Control Register 120

Base Address 0x100B_01E0

Bits Field Name Rst. Description

16 diable_rd_interleave 0 Disable read data interleaving.

Set to 1 in FSBL for valid TileLink

operation

Table 127: DDR Controller Control Register 120

DDR Controller Control Register 132

Base Address 0x100B_0210

Bits Field Name Rst. Description

7 int_status[7] 0 An error has occured on the port com-

mand channel

8 int_status[8] 0 The memory initialization has been

completed

Table 128: DDR Controller Control Register 132

Copyright © 2018, SiFive Inc. All rights reserved. 122

DDR Controller Control Register 136

Base Address 0x100B_0220

Bits Field Name Rst. Description

[31:0] int_mask 0 MASK interrupt due to cause

INT_STATUS [31:0]

Table 129: DDR Controller Control Register 136

20.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF)

The attached DDR is memory mapped starting at address 0x8000_0000.

20.3 Reset and Initialization

At power-on, the DDR Subsystem is held in reset by the PRCI block.

The DDR Subsystem is initialized in the First Stage Boot Loader (FSBL) as follows:

1. The DDR Subsystem DDRCTRLCLK input clock is started. DDRPLL in the PRCI is

programmed to generate the DDR Subsystem clock, which runs at 1/4 the memory

MT/s. See Chapter 7.

2. The DDR Subsystem is brought out of reset.

a. The DDR controller reset is released by setting the PRCI Peripheral

Devices Reset Control Register (devicesresetreg) field

ddr_ctrl_rst_n to 1.

b. A wait of one full DDRCTRLCLK cycles occurs.

c. The DDR controller register interface reset and DDR Subsystem PHY

reset are released by setting PRCI register fields ddr_axi_rst_n,

ddr_ahb_rst_n and ddr_phy_rst_n to 1.

d. A wait of 256 full DDRCTRLCLK cycles occurs.

3. The DDR Controller configuration registers at address 0x100B_0000 to

0x100B_0424 are set. The start register field in the DDR Subsystem Control Reg-

ister 0 (0x100B_0000) is held at 0.

4. The DDR PHY configuration registers from address 0x100B_5200 to 0x100B_52F8

are set.

5. The DDR PHY configuration registers from address 0x100B_4000 to 0x100B_51FC

are set.

6. The "encoded burst length" bstlen field in DDR Subsystem Control Register 19 is

set at address 0x100B_004C.

7. All interrupts are disabled by setting int_mask in DDR Subsystem control register

136 at address 0x100B_0220 to 0xFFFF_FFFF.

Copyright © 2018, SiFive Inc. All rights reserved. 123

8. The start register field in DDR Subsystem Control Register 0 at address

0x100B_0000 is set to 1, activating the DDR calibration and training operation.

9. The CPU waits for memory initialization completion, polling register int_status[8]

in DDR Subsystem Control Register 132 (0x100B_0210).

10. The Bus Blocker in front of the DDR controller memory slave port is disabled by set-

ting Bus Blocker Control Register 0 at address 0x100B_8000. Bits 56 to 59 are set

to 0xF enabling all memory operations. The least significant bits are set to the upper

DDR address in 32-bit words.

11. The DDR Subsystem is ready to service memory accesses at base address

0x8000_0000.

Copyright © 2018, SiFive Inc. All rights reserved. 124

Chapter 21

Error Device

The error device is a TileLink slave that responds to all requests with a TileLink error. It has no

registers. The entire memory range discards writes and returns zeros on read. Both operation

acknowledgments carry an error indication.

The error device serves a dual role. Internally, it is used as a landing pad for illegal off-chip

requests. However, it also useful for testing software handling of bus errors.

125

Chapter 22

ChipLink

ChipLink is an off-chip serialization of the TileLink protocol, used to connect to an optional

expansion board. In the FU540-C000, it is implemented as a source-synchronous single-data-

rate parallel bus. Source code implementing this prototype protocol can be found in the SiFive-

Blocks GitHub repository.

ChipLink supports:

• off-chip cache-coherent bus masters (e.g., in an FPGA)

• off-chip memory-mapped slave devices

• credit-based flow control to absorb off-chip latency

• out-of-order completion to unblock concurrent operations

• optional in-order completion to speed up serial masters

Several address ranges in the FU540-C000 point at ChipLink. Address ranges below 2 GiB are

used for 32-bit-only devices, whereas the large address ranges above 2 GiB make it possible to

memory map large devices or memories. One pair of ranges is marked uncacheable address

space, which can be used for MMIO devices. Another pair of ranges are behind the L2 cache,

suitable for attaching large memory devices. See Table 130.

Note

If an off-chip master wishes to access memory that is cached by the L2, it must access that

memory through the FU540-C000 via ChipLink. The request may be serviced by the L2 or

the L2 may in turn request the memory from an off-chip slave. Attempting to access the

memory directly off-chip will result in data corruption.

126

https://github.com/sifive/sifive-blocks
https://github.com/sifive/sifive-blocks

Address Size Use Note

0x00_4000_0000 0x00_2000_0000 MMIO Uncached

0x00_6000_0000 0x00_2000_0000 Memory Cached by L2

0x20_0000_0000 0x10_0000_0000 MMIO Uncached

0x30_0000_0000 0x10_0000_0000 Memory Cached by L2

Table 130: ChipLink Memory Map

An example FPGA design suitable for use bridging PCI Express (PCIe) to the FU540-C000 can

be found in the SiFive-Blocks GitHub repository. In the block diagram below, the example

iofpga design is illustrated. Additional cache-coherent TL-C or TL-UH masters can be con-

nected to the upper crossbar while additional MMIO slaves can be connected to the lower

crossbar.

22.1 Message Signaled Interrupts (MSI)

To transport interrupts from off-chip to the FU540-C000, the FU540-C000 includes a MSI Slave

device. This device simply connects bus-mapped one-bit registers with 32-bit spacing to inter-

rupts connected to the PLIC. On the far side of ChipLink, there is a MSI Master that translates

edges on incoming interrupt lines into writes to these registers on the MSI Slave.

Copyright © 2018, SiFive Inc. All rights reserved. 127

https://github.com/sifive/sifive-blocks

This mechanism makes it possible for devices in the FPGA to connect their interrupts to the

PLIC via this ChipLink bus. Beyond a ~100 ns increased interrupt latency, this interrupt forward-

ing is completely invisible to devices in the FPGA.

Copyright © 2018, SiFive Inc. All rights reserved. 128

Chapter 23

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification 0.13. Currently only interactive debug and hardware breakpoints are sup-

ported.

23.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

Table 131: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

23.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

129

Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 132: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

23.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 133: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 134: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

Table 135: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any

Copyright © 2018, SiFive Inc. All rights reserved. 130

attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

23.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification 0.13.

23.1.4 Debug PC dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

23.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation 0.13.

23.2 Breakpoints

The FU540-C000 supports two hardware breakpoint registers per hart, which can be flexibly

shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 136: TDR CSRs when used as Breakpoints

23.2.1 Breakpoint Match Control Register mcontrol

Each breakpoint control register is a read/write register laid out in Table 137.

Copyright © 2018, SiFive Inc. All rights reserved. 131

Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[17:12] action WARL 0 Breakpoint action to take. 0 or 1.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 137: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The bpaction field is an 8-bit read-write WARL field that specifies the available actions when

the address match is successful. The value 0 generates a breakpoint exception. The value 1

enters debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered

Copyright © 2018, SiFive Inc. All rights reserved. 132

breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 138: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

23.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

23.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.

Copyright © 2018, SiFive Inc. All rights reserved. 133

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

23.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

23.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

23.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The FU540-C000 has 16 32-bit words of program buffer for the debugger to direct a hart to exe-

cute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc

instructions and storing the result into the program buffer.

The FU540-C000 has two 32-bit words of debug data RAM. Its location can be determined by

reading the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM

space is used to pass data for the Access Register abstract command described in the RISC-V

Debug Specification. The FU540-C000 supports only general-purpose register access when

harts are halted. All other commands must be implemented by executing from the debug pro-

gram buffer.

In the FU540-C000, both the program buffer and debug data RAM are general-purpose RAM

and are mapped contiguously in the Core Complex memory space. Therefore, additional data

can be passed in the program buffer, and additional instructions can be stored in the debug data

RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The FU540-C000 does not implement the DMSTATUS.anyhavereset or

DMSTATUS.allhavereset bits.

23.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.

Copyright © 2018, SiFive Inc. All rights reserved. 134

23.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

23.3.4 Safe Zero Address

In the FU540-C000, the debug module contains the address 0x0 in the memory map. Reads to

this address always return 0, and writes to this address have no impact. This property allows a

"safe" location for unprogrammed parts, as the default mtvec location is 0x0.

Copyright © 2018, SiFive Inc. All rights reserved. 135

Chapter 24

Debug Interface

The SiFive FU540-C000 includes the JTAG debug transport module (DTM) described in The

RISC‑V Debug Specification 0.13. This enables a single external industry-standard 1149.1

JTAG interface to test and debug the system. The JTAG interface is directly connected to input

pins.

24.1 JTAG TAPC State Machine

The JTAG controller includes the standard TAPC state machine shown in Figure 11. The state

machine is clocked with TCK. All transitions are labelled with the value on TMS, except for the

arc showing asynchronous reset when TRST=0.

136

Figure 11: JTAG TAPC state machine.

24.2 Resetting JTAG Logic

The JTAG logic must be asynchronously reset by asserting the power-on-reset signal. This dri-

ves an internal jtag_reset signal.

Asserting jtag_reset resets both the JTAG DTM and debug module test logic. Because parts

of the debug logic require synchronous reset, the jtag_reset signal is synchronized inside the

FU540-C000.

During operation, the JTAG DTM logic can also be reset without jtag_reset by issuing 5

jtag_TCK clock ticks with jtag_TMS asserted. This action resets only the JTAG DTM, not the

debug module.

24.3 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by jtag_TCK. The JTAG logic

is fully static and has no minimum clock frequency. The maximum jtag_TCK frequency is part-

specific.

Copyright © 2018, SiFive Inc. All rights reserved. 137

24.4 JTAG Standard Instructions

The JTAG DTM implements the BYPASS and IDCODE instructions.

On the FU540-C000, the IDCODE is set to 0x20000913.

24.5 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the

debug scan register between jtag_TDI and jtag_TDO.

The debug scan register includes a 2-bit opcode field, a 7-bit debug module address field, and a

32-bit data field to allow various memory-mapped read/write operations to be specified with a

single scan of the debug scan register.

These are described in The RISC‑V Debug Specification 0.13.

Copyright © 2018, SiFive Inc. All rights reserved. 138

Chapter 25

Errata

This section lists all known issues found in FU540-C000.

25.1 ROCK-1: ITIM de-allocation corrupts I-cache contents

Problem

When decreasing the amount of L1 I-cache memory mapped to the ITIM, instructions

stored in the I-cache can become corrupted.

Implication

Programs run on a core after ITIM memory has been decreased may exhibit unpredictable

behavior.

Workaround

ITIM de-allocation can only be performed by the core that owns the ITIM using the following

instruction sequence:

.align 3
sb x0, (t0)
fence.i

25.2 ROCK-2: High 24 address bits are ignored

Problem

When accessing memory, the high 24-bits of virtual and physical addresses are sometimes

unchecked. This affects indirect jumps, returns, loads, stores, and atomics.

Implication

Software that should trap with an illegal memory access sometimes continues to run.

Workaround

Do not access out-of-bound addresses in software.

139

25.3 ROCK-3: E51 atomic operations not ordered correctly

Problem

Acquire/release ordering semantics on atomic operations in the E51 core do not work cor-

rectly.

Implication

Loads and stores may appear to be re-ordered relative to atomic operations in a way that is

illegal under the RISC-V memory model.

Workaround

Set both acquire and release bits on atomics run on the E51 core; e.g., use amoor.d.aqrl

instead of amoor.d.aq or amoor.d.rl.

25.4 ROCK-4: The DPC CSR is not sign-extended

Problem

The DPC CSR correctly retains only the low 40 bits of the PC when entering debug mode.

When the CSR is read, the result should be sign-extended to 64 bits but is not.

Implication

The debugger reports the PC with the high 24 bits always zero. This does not affect return

from debug mode (because the PC is also only 40 bits).

Workaround

The debugger can sign-extend DPC itself.

25.5 ROCK-5: Watchpoints fire after stores are issued

Problem

The RISC-V debug specification allows implementations to either break on the store

instruction before it has been executed or to break on the instruction following a store after

it has been executed. Cores with this errata break on the store, after it has been executed

and self-report to the debugger that they do not execute watch-pointed stores, i.e., that

timing is before.

Implication

Watchpoints on memory with side effects will cause that side effect to occur twice. For

example, if a watchpoint is set on the UART TX register, a write to the UART TX register

will cause a character to be transmitted and the watchpoint to fire. Once the program is

resumed, that same character will be transmitted again. The same double-write will occur

with watch-points on memory-backed addresses, but the second write typically has no visi-

ble effect.

Workaround

Do not put watchpoints on memory with side effects. Do not expect to see the old value in

memory after a watchpoint has fired.

Copyright © 2018, SiFive Inc. All rights reserved. 140

25.6 CCACHE-1: L2 ECC failed address reporting flawed

Problem

Under memory contention, an uncorrectable ECC failure in the L2 will sometimes report the

wrong address in the registers DatECCFailHigh and DatECCFailLow.

Implication

It is impossible to be certain what memory was corrupted when an uncorrectable L2 ECC

failure occurs.

Workaround

Treat all L2 ECC uncorrectable failures as fatal.

25.7 I2C-1: I2C interrupt can not be cleared

Problem

The I2C controller command IACK (interrupt acknowledge) does not work.

Implication

The I2C controller’s interrupt can not be lowered, rendering it unusable.

Workaround

Poll the I2C controller state to wait for TIP (transaction in progress) to go low.

Copyright © 2018, SiFive Inc. All rights reserved. 141

Chapter 26

References

Visit the SiFive forums for support and answers to frequently asked questions:

https://forums.sifive.com

[1] A. Waterman and K. Asanovic, Eds., The RISC-V Instruction Set Manual, Volume I: User-

Level ISA, Version 2.2, May 2017. [Online]. Available: https://riscv.org/specifications/

[2] ——, The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version 1.10,

May 2017. [Online]. Available: https://riscv.org/specifications/

142

https://forums.sifive.com/
https://riscv.org/specifications/
https://riscv.org/specifications/

	SiFive FU540-C000 Manual
	SiFive FU540-C000 Manual
	Proprietary Notice
	Release Information

	Chapter 1 Introduction
	1.1 FU540-C000 Overview
	1.2 E51 RISC‑V Monitor Core
	1.3 U54 RISC‑V Application Cores
	1.4 Interrupts
	1.5 On-Chip Memory System
	1.6 Universal Asynchronous Receiver/Transmitter
	1.7 Pulse Width Modulation
	1.8 I²C
	1.9 Hardware Serial Peripheral Interface (SPI)
	1.10 GPIO Peripheral
	1.11 Gigabit Ethernet MAC
	1.12 DDR Memory Subsystem
	1.13 Debug Support

	Chapter 2 List of Abbreviations and Terms
	Chapter 3 E51 RISC-V Core
	3.1 Instruction Memory System
	3.1.1 I-Cache Reconfigurability

	3.2 Instruction Fetch Unit
	3.3 Execution Pipeline
	3.4 Data Memory System
	3.5 Atomic Memory Operations
	3.6 Supported Modes
	3.7 Physical Memory Protection (PMP)
	3.7.1 Functional Description
	3.7.2 Region Locking

	3.8 Hardware Performance Monitor
	3.9 ECC
	3.9.1 Single Bit Errors

	Chapter 4 U54 RISC-V Core
	4.1 Instruction Memory System
	4.1.1 I-Cache Reconfigurability

	4.2 Instruction Fetch Unit
	4.3 Execution Pipeline
	4.4 Data Memory System
	4.5 Atomic Memory Operations
	4.6 Floating-Point Unit (FPU)
	4.7 Virtual Memory Support
	4.8 Supported Modes
	4.9 Physical Memory Protection (PMP)
	4.9.1 Functional Description
	4.9.2 Region Locking

	4.10 Hardware Performance Monitor
	4.11 ECC
	4.11.1 Single Bit Errors

	Chapter 5 Memory Map
	Chapter 6 Boot Process
	6.1 Reset Vector
	6.2 Zeroth Stage Boot Loader (ZSBL)
	6.3 First Stage Boot Loader (FSBL)
	6.4 Berkeley Boot Loader (BBL)
	6.5 Boot Methods
	6.5.1 Flash Bit-Banged x1
	6.5.2 Flash Memory-Mapped x1
	6.5.3 Flash Memory-Mapped x4
	6.5.4 SD Card Bit-Banged x1

	Chapter 7 Clocking and Reset
	7.1 Clocking
	7.2 Reset
	7.3 Memory Map (0x1000_0000–0x1000_0FFF)
	7.4 Reset and Clock Initialization
	7.4.1 Power-On
	7.4.2 Setting coreclk frequency
	7.4.3 DDR and Ethernet Subsystem Clocking and Reset

	Chapter 8 Interrupts
	8.1 Interrupt Concepts
	8.2 Interrupt Entry and Exit
	8.3 Interrupt Control Status Registers
	8.3.1 Machine Status Register (mstatus)
	8.3.2 Machine Interrupt Enable Register (mie)
	8.3.3 Machine Interrupt Pending (mip)
	8.3.4 Machine Cause Register (mcause)
	8.3.5 Machine Trap Vector (mtvec)

	8.4 Supervisor Mode Interrupts
	8.4.1 Delegation Registers (m*deleg)
	8.4.2 Supervisor Status Register (sstatus)
	8.4.3 Supervisor Interrupt Enable Register (sie)
	8.4.4 Supervisor Interrupt Pending (sip)
	8.4.5 Supervisor Cause Register (scause)
	8.4.6 Supervisor Trap Vector (stvec)
	8.4.7 Delegated Interrupt Handling

	8.5 Interrupt Priorities
	8.6 Interrupt Latency

	Chapter 9 Core Local Interruptor (CLINT)
	9.1 CLINT Memory Map
	9.2 MSIP Registers
	9.3 Timer Registers
	9.4 Supervisor Mode Delegation

	Chapter 10 Platform-Level Interrupt Controller (PLIC)
	10.1 Memory Map
	10.2 Interrupt Sources
	10.3 Interrupt Priorities
	10.4 Interrupt Pending Bits
	10.5 Interrupt Enables
	10.6 Priority Thresholds
	10.7 Interrupt Claim Process
	10.8 Interrupt Completion

	Chapter 11 Level 2 Cache Controller
	11.1 Level 2 Cache Controller Overview
	11.2 Functional Description
	11.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)
	11.2.2 Way Masking and Locking
	11.2.3 L2 Scratchpad
	11.2.4 Error Correcting Codes (ECC)

	11.3 Memory Map
	11.4 Register Descriptions
	11.4.1 Cache Configuration Register (Config)
	11.4.2 Way Enable Register (WayEnable)
	11.4.3 ECC Error Injection Register (ECCInjectError)
	11.4.4 ECC Directory Fix Address (DirECCFix*)
	11.4.5 ECC Directory Fix Count (DirECCFixCount)
	11.4.6 ECC Data Fix Address (DatECCFix*)
	11.4.7 ECC Data Fix Count (DatECCFixCount)
	11.4.8 ECC Data Fail Address (DatECCFail*)
	11.4.9 ECC Data Fail Count (DatECCFailCount)
	11.4.10 Cache Flush Registers (Flush*)
	11.4.11 Way Mask Registers (WayMask*)

	Chapter 12 Platform DMA Engine (PDMA)
	12.1 Functional Description
	12.1.1 PDMA Channels
	12.1.2 Interrupts

	12.2 PDMA Memory Map
	12.3 Register Descriptions
	12.3.1 Channel Control Register (Control)
	12.3.2 Channel Next Configuration Register (NextConfig)
	12.3.3 Channel Byte Transfer Register (NextBytes)
	12.3.4 Channel Destination Register (NextDestination)
	12.3.5 Channel Source Address (NextSource)
	12.3.6 Channel Exec Registers (Exec*)

	Chapter 13 Universal Asynchronous Receiver/Transmitter (UART)
	13.1 UART Overview
	13.2 UART Instances in FU540-C000
	13.3 Memory Map
	13.4 Transmit Data Register (txdata)
	13.5 Receive Data Register (rxdata)
	13.6 Transmit Control Register (txctrl)
	13.7 Receive Control Register (rxctrl)
	13.8 Interrupt Registers (ip and ie)
	13.9 Baud Rate Divisor Register (div)

	Chapter 14 Pulse Width Modulator (PWM)
	14.1 PWM Overview
	14.2 PWM Instances in FU540-C000
	14.3 PWM Memory Map
	14.4 PWM Count Register (pwmcount)
	14.5 PWM Configuration Register (pwmcfg)
	14.6 Scaled PWM Count Register (pwms)
	14.7 PWM Compare Registers (pwmcmp0–pwmcmp3)
	14.8 Deglitch and Sticky Circuitry
	14.9 Generating Left- or Right-Aligned PWM Waveforms
	14.10 Generating Center-Aligned (Phase-Correct) PWM Waveforms
	14.11 Generating Arbitrary PWM Waveforms using Ganging
	14.12 Generating One-Shot Waveforms
	14.13 PWM Interrupts

	Chapter 15 Inter-Integrated Circuit (I²C) Master Interface
	15.1 I²C Instance in FU540-C000

	Chapter 16 Serial Peripheral Interface (SPI)
	16.1 SPI Overview
	16.2 SPI Instances in FU540-C000
	16.3 Memory Map
	16.4 Serial Clock Divisor Register (sckdiv)
	16.5 Serial Clock Mode Register (sckmode)
	16.6 Chip Select ID Register (csid)
	16.7 Chip Select Default Register (csdef)
	16.8 Chip Select Mode Register (csmode)
	16.9 Delay Control Registers (delay0 and delay1)
	16.10 Frame Format Register (fmt)
	16.11 Transmit Data Register (txdata)
	16.12 Receive Data Register (rxdata)
	16.13 Transmit Watermark Register (txmark)
	16.14 Receive Watermark Register (rxmark)
	16.15 SPI Interrupt Registers (ie and ip)
	16.16 SPI Flash Interface Control Register (fctrl)
	16.17 SPI Flash Instruction Format Register (ffmt)

	Chapter 17 General Purpose Input/Output Controller (GPIO)
	17.1 GPIO Instance in FU540-C000
	17.2 Memory Map
	17.3 Input / Output Values
	17.4 Interrupts
	17.5 Internal Pull-Ups
	17.6 Drive Strength
	17.7 Output Inversion

	Chapter 18 One-Time Programmable Memory Interface (OTP)
	18.1 OTP Overview
	18.2 Memory Map
	18.3 Detailed Register Fields
	18.4 OTP Contents in the FU540-C000

	Chapter 19 Gigabit Ethernet Subsystem
	19.1 Gigabit Ethernet Overview
	19.2 Memory Map
	19.2.1 GEMGXL Management Block Control Registers (0x100A_0000–0x100A_FFFF)
	19.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)

	19.3 Initialization and Software Interface

	Chapter 20 DDR Subsystem
	20.1 DDR Subsystem Overview
	20.2 Memory Map
	20.2.1 Bus Blocker Control Registers (0x100B_8000–0x100B_8FFF)
	20.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF)
	20.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF)

	20.3 Reset and Initialization

	Chapter 21 Error Device
	Chapter 22 ChipLink
	22.1 Message Signaled Interrupts (MSI)

	Chapter 23 Debug
	23.1 Debug CSRs
	23.1.1 Trace and Debug Register Select (tselect)
	23.1.2 Trace and Debug Data Registers (tdata1-3)
	23.1.3 Debug Control and Status Register (dcsr)
	23.1.4 Debug PC dpc
	23.1.5 Debug Scratch dscratch

	23.2 Breakpoints
	23.2.1 Breakpoint Match Control Register mcontrol
	23.2.2 Breakpoint Match Address Register (maddress)
	23.2.3 Breakpoint Execution
	23.2.4 Sharing Breakpoints Between Debug and Machine Mode

	23.3 Debug Memory Map
	23.3.1 Debug RAM and Program Buffer (0x300–0x3FF)
	23.3.2 Debug ROM (0x800–0xFFF)
	23.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)
	23.3.4 Safe Zero Address

	Chapter 24 Debug Interface
	24.1 JTAG TAPC State Machine
	24.2 Resetting JTAG Logic
	24.3 JTAG Clocking
	24.4 JTAG Standard Instructions
	24.5 JTAG Debug Commands

	Chapter 25 Errata
	25.1 ROCK-1: ITIM de-allocation corrupts I-cache contents
	25.2 ROCK-2: High 24 address bits are ignored
	25.3 ROCK-3: E51 atomic operations not ordered correctly
	25.4 ROCK-4: The DPC CSR is not sign-extended
	25.5 ROCK-5: Watchpoints fire after stores are issued
	25.6 CCACHE-1: L2 ECC failed address reporting flawed
	25.7 I2C-1: I2C interrupt can not be cleared

	Chapter 26 References

