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Chapter 1

Overview

SiFive’s U54-MC Core Complex is a high-performance full-Linux-capable cache-coherent 64-bit
RISC-V multiprocessors available as an IP block. The U54-MC Core Complex follows all applicable
RISC-V standards, and this document should be read in conjunction with the official RISC-V user-
level and privileged-architecture standard documents.
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Figure 1.1: U54-MC Core Complex Block Diagram

The U54-MC Core Complex is shown in Figure 1.1. The U54-MC Core Complex includes 4x 64-bit
RISC-V U54 cores with private caches and a shared L2 cache, a 64-bit RISC-V E51 monitor core, a
platform-level interrupt controller (PLIC), a core local interruptor (CLINT), a JTAG-accessible debug

1
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unit, a memory port for high-bandwidth memory access, and separate ports for I/O accesses. The
L2 cache within the U54-MC Core Complex acts as the coherence hub in a system, and provides
an external caching master port to support external high-bandwidth cache-coherent masters.

A summary of features in the U54-MC Core Complex can be found in Table 1.1.

U54-MC Core Complex Feature Set
Feature Description
Number of cores 5 cores.
RISC-V Core Name 4x U54 RISC-V cores.
Monitor Core E51 RISC-V monitor core.
Local Interrupts 48 Local Interrupt signals per hart which can be con-

nected to off core complex devices.
Level-2 Cache 2 MiB, 16-way, L2 Cache.
PLIC Interrupts Support for 511 interrupts. 3 interrupts are from on

core complex peripherals, the remaining 508 inter-
rupts can be connected to the PLIC from off core
complex devices.

PLIC Priority Levels 7 PLIC priority levels.
Hardware Breakpoints 2 hardware breakpoints.
Physical Memory Protection
Unit

Each hart in the RISC-V Core IP has a PMP with 8x
regions and a minimum granularity of 4 bytes.

Table 1.1: U54-MC Core Complex Feature Set

1.1 U54 RISC-V Application Cores
The U54-MC Core Complex is configured with 4x 64-bit cache-coherent U54 RISC-V application
cores. Each U54 core has a high-performance single-issue in-order 64-bit execution pipeline,
with a peak sustained execution rate of one instruction per clock cycle. U54 cores support
a comprehensive dynamic branch prediction scheme, including BTB, BHT, and return-address
stacks exploiting local and global history to improve performance. The cores support the standard
RV64IMAFDC ISA, including full hardware support for single and double-precision IEEE 754-2008
floating-point with fully pipelined fused multiply-adds, a hardware divide and square-root unit, and
full hardware support for subnormal numbers. A hardware integer multiplier and divider is also
provided. The U54 core supports the standard C compressed extension for reduced code size.
The U54 cores implement up to 512 GiB of virtual address space using the Sv39 virtual address
translation scheme with a hardware page-table walker for address-translation cache refills.

The U54 RISC-V core is described in more detail in Chapter 3.

1.2 E51 RISC-V Monitor Core
The U54-MC Core Complex includes an E51 RISC-V monitor core to securely boot the system and
service low-level interrupts and other tasks without disturbing the larger cores. The E51 supports
the RV64IMAC ISA. The monitor core has full coherent access to the shared memory system and
all peripherals. The monitor core can continue to service lightweight tasks while the application
cores and L2 cache are in deep sleep to save power.

The E51 RISC-V core is described in more detail in Chapter 4.
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1.3 Interrupts
The U54-MC Core Complex supports 48 high-priority, low-latency local vectored interrupts per-
hart. This RISC-V Core IP includes a RISC-V standard platform-level interrupt controller (PLIC),
which supports 511 global interrupts with 7 priority levels. This RISC-V Core IP also provides
the standard RISC-V machine-mode timer and software interrupts via the Core Local Interruptor
(CLINT).

Interrupts are described in Chapter 7, the PLIC in Chapter 8, and the CLINT in Chapter 9.

1.4 Memory System
Each U54 core’s private L1 instruction and data caches are configured to be a 8-way set-
associative 32 KiB caches.

The E51 monitor core has an 2-way set-associative 4 KiB L1 instruction cache.

All on-chip memory structures are protected with parity and/or ECC and all cores in the RISC-V
Core IP have Physical Memory Protection (PMP) units.

The Level 1 memories are described in Chapter 3, the PMP is described in Chapter 10, and the
L2 Cache Controller is described in Chapter 11.

1.5 Debug Support
The U54-MC Core Complex includes extensive platform-level debug facilities including hardware
breakpoints, watchpoints, and single-step execution accessed via an industry-standard JTAG in-
terface and supported by a full set of open-source debug tools. All components in the system,
including processors, accelerators, memories, peripheral devices, and the interrupt controller, can
be controlled and monitored over the debug port.

Debug support is described in detail in Chapter 12 and the debug interface is described in Chap-
ter 13.

1.6 External Bus Interfaces
The U54-MC Core Complex has System, Memory, and Peripheral Ports for accessing off core
complex address space. The System Port conform to the TL-UH specification and can be used to
access high-speed off core complex devices. The Memory Port supports cacheable transactions
via the TL-C specification and is connected to main memory. The Peripheral Port supports the
TL-UL specification and is typically connected to lower speed peripherals.

There is also a TL-C bus interface, called the Front Port, which allows off core complex masters to
access on core complex devices, such as the data and instruction tightly integrated memories.

More details on the U54-MC Core Complex ports can be found in Chapter 5 and Chapter 6.



Chapter 2

Terminology

CLINT Core Local Interruptor. Generates per-hart software interrupts and timer
interrupts.

Hart HARdware Thread
DTIM Data Tightly Integrated Memory
ITIM Instruction Tightly Integrated Memory
JTAG Joint Test Action Group
LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.
PMP Physical Memory Protection
PLIC Platform-Level Interrupt Controller. The global interrupt controller in a RISC-

V system.
TileLink A free and open interconnect standard originally developed at UC Berkeley.
RO Used to describe a Read Only register field.
RW Used to describe a Read/Write register field.
WO Used to describe a Write Only registers field.
WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.
WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the
value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written
with legal values and that only returns legal value if last written with a legal
value.

WPRI Writes-Preserve Reads-Ignore field. A register field that may contain un-
known information. Reads should ignore the value returned, but writes to
the whole register should preserve the original value.

4



Chapter 3

U54 RISC-V Core

This chapter describes the 64-bit U54 RISC-V processor core used in the U54-MC Core Com-
plex. The processor core comprises an instruction memory system, an instruction fetch unit, an
execution pipeline, a data memory system, and support for local interrupts.

The U54 feature set is summarized in Table 3.1.

U54 Feature Set
Feature Description
ISA RV64IMAFDC.
Instruction Cache 32 KiB 8-way instruction cache.
Instruction Tightly Integrated
Memory

The U54 has support for an ITIM with a maximum
size of 28 KiB.

Data Cache 32 KiB 8-way data cache.
Virtual Memory Support The U54 has support for Sv39 virtual memory sup-

port with a 39-bit virtual address space, 38-bit physi-
cal address space, and a 32 entry TLB.

Modes The U54 supports the following modes: Machine
Mode, Supervisor Mode, User Mode.

Table 3.1: U54 Feature Set

3.1 Instruction Memory System
The instruction memory system consists of a dedicated 32 KiB 8-way set-associative instruction
cache. The access latency of all blocks in the instruction memory system is one clock cycle.
The instruction cache is not kept coherent with the rest of the platform memory system. Writes to
instruction memory must be synchronized with the instruction fetch stream by executing a FENCE.I
instruction.

The instruction cache has a line size of 64 B and a cache line fill will trigger a burst access outside
of the U54-MC Core Complex. The core will cache instructions from executable addresses, with
the exception of the ITIM, which is further described in Section 3.1.1. Please see the U54-MC
Core Complex Memory Map in Chapter 6 for a description of executable address regions which
are denoted by the attribute X.

5
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Trying to execute an instruction from a non-executable address will result in a synchronous trap.

3.1.1 I-Cache Reconfigurability
The instruction cache can be partially reconfigured into an Instruction Tightly Integrated Mem-
ory (ITIM), which occupies a fixed address range in the memory map. ITIM provides high-
performance, predictable instruction delivery. Fetching an instruction from ITIM is as fast as an
instruction-cache hit, with no possibility of a cache miss. ITIM can hold data as well as instructions,
though loads and stores to ITIM are not as performant as loads and stores to DTIM.

The instruction cache can be configured as ITIM for all ways except for 1 in units of cache lines
(64 B bytes). A single instruction cache way must remain an instruction cache. ITIM is allocated
simply by storing to it. A store to the nth byte of the ITIM memory map reallocates the first n + 1
bytes of instruction cache as ITIM, rounded up to the next cache line.

ITIM is deallocated by storing zero to the first byte after the ITIM region, i.e. 28 KiB after the base
address of ITIM as indicated in the Memory Map in Chapter 6. The deallocated ITIM space is
automatically returned to the instruction cache.

For determinism, software must clear the contents of ITIM after allocating it. It is unpredictable
whether ITIM contents are preserved between deallocation and allocation.

3.2 Instruction Fetch Unit
The U54 instruction fetch unit contains branch prediction hardware to improve performance of
the processor core. The branch predictor comprises a 40-entry branch target buffer (BTB) which
predicts the target of taken branches, a 128-entry branch history table (BHT), which predicts the
direction of conditional branches, and a 2-entry return-address stack (RAS) which predicts the
target of procedure returns. The branch predictor has a one-cycle latency, so that correctly pre-
dicted control-flow instructions result in no penalty. Mispredicted control-flow instructions incur a
three-cycle penalty.

The U54 implements the standard Compressed (C) extension to the RISC-V architecture which
allows for 16-bit RISC-V instructions.

3.3 Execution Pipeline
The U54 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:
instruction fetch, instruction decode and register fetch, execute, data memory access, and register
writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed so
that most instructions have a one-cycle result latency. There are several exceptions:

• LW has a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• CSR reads have a three-cycle result latency.

• MUL, MULH, MULHU, and MULHSU have a 5-cycle result latency.
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• DIV, DIVU, REM, and REMU have between a 2-cycle and 33-cycle result latency, depending
on the operand values.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions may
be scheduled to avoid stalls.

The U54 implements the standard Multiply (M) extension to the RISC-V architecture for integer
multiplication and division. The U54 has a 16-bit per cycle hardware multiply and a 4-bit per cycle
hardware divide.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-
predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps incur
a three-cycle penalty.

Most CSR writes result in a pipeline flush with a five-cycle penalty.

3.4 Data Memory System
The U54 data memory system has a 8-way set-associative 32 KiB write-back data cache that
supports 64 B cache lines. The access latency is two clock cycles for words and double-words,
and three clock cycles for smaller quantities. Misaligned accesses are not supported in hardware
and result in a trap to support software emulation. The data caches are kept coherent with a
directory-based cache coherence manager, which resides in the outer L2 cache.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle. Loads
to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 Atomic Memory Operations
The U54 core supports the RISC-V standard Atomic (A) extension on the DTIM and the Peripheral
Port. Atomic memory operations to regions that do not support them generate an access exception
precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions, hence
generate an access exception on DTIM and other uncached memory regions.

See The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 [1] for more infor-
mation on the instructions added by this extension.

3.6 Floating-Point Unit (FPU)
The U54 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for
32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined
fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators, and
float-to-integer conversion units, all with full hardware support for subnormals and all IEEE default
values.

3.7 Virtual Memory Support
The U54 has support for virtual memory through the use of a Memory Management Unit (MMU).
The MMU supports the Bare and Sv39 modes as described in The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Version 1.10 [2].
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The U54 MMU has a 39-bit virtual address space mapped to a 38-bit physical address space.
A hardware page-table walker refills the address translation caches. Both instruction and data
address translation caches are fully associative, and have 32 entires. The MMU supports 2 MiB
megapages and 1 GiB gigapages to reduce translation overheads for large contiguous regions of
virtual and physical address space.

Note that the U54 does not automatically set the Accessed (A) and Dirty (D) bits in a Sv39 Page
Table Entry (PTE). Instead, the U54 MMU will raise a page fault exception for a read to a page
with PTE.A=0 or a write to a page with PTE.D=0.

3.8 Local Interrupts
Each U54 supports up to 48 local interrupt sources that are routed directly to the core. See
Chapter 7 for a detailed description of Local Interrupts.

3.9 Supported Modes
The U54 supports RISC-V supervisor and user modes, providing three levels of privilege: machine
(M), supervisor (S) and user (U).

Supervisor mode adds a number of additional CSRs and capabilities. Please see The RISC-V
Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2] for more information on
the supported privilege modes.

3.10 Physical Memory Protection (PMP)
The U54-MC Core Complex includes a Physical Memory Protection Unit compliant with The
RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2]. PMP can
be used to set memory access privileges (read, write, execute) for specified memory regions. The
U54-MC Core Complex PMP supports 8 regions with a minimum region size of 4 bytes.

See Chapter 10 for more information on the PMP.

3.11 Hardware Performance Monitor
The U54-MC Core Complex supports a basic hardware performance monitoring facility compliant
with The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2]. The
mcycle CSR holds a count of the number of clock cycles the hart has executed since some ar-
bitrary time in the past. The minstret CSR holds a count of the number of instructions the hart
has retired since some arbitrary time in the past. Both are 64-bit counters. The hardware per-
formance monitor includes two additional event counters, mhpmcounter3 and mhpmcounter4. The
event selector CSRs mhpmevent3 and mhpmevent4 are registers that control which event causes
the corresponding counter to increment. The mhpmcounters are 40-bit counters.

The event selectors are partitioned into two fields, as shown in Table 3.2: the lower 8 bits select
an event class, and the upper bits form a mask of events in that class. The counter increments if
the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to 0x4200,
then mhpmcounter3 will increment when either a load instruction or a conditional branch instruction
retires. Note, an event selector of 0 means “count nothing.”
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Machine Hardware Performance Monitor Event Register
Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning
8 Exception taken
9 Integer load instruction retired

10 Integer store instruction retired
11 Atomic memory operation retired
12 System instruction retired
13 Integer arithmetic instruction retired
14 Conditional branch retired
15 JAL instruction retired
16 JALR instruction retired
17 Integer multiplication instruction retired
18 Integer division instruction retired
19 Floating-point load instruction retired
20 Floating-point store instruction retired
21 Floating-point addition retired
22 Floating-point multiplication retired
23 Floating-point fused multiply-add retired
24 Floating-point division or square-root retired
25 Other floating-point instruction retired

Microarchitectural Events, mhpeventX[7:0] = 1
Bits Meaning

8 Load-use interlock
9 Long-latency interlock

10 CSR read interlock
11 Instruction cache/ITIM busy
12 Data cache/DTIM busy
13 Branch direction misprediction
14 Branch/jump target misprediction
15 Pipeline flush from CSR write
16 Pipeline flush from other event
17 Integer multiplication interlock
18 Floating-point interlock

Memory System Events, mhpeventX[7:0] = 2
Bits Meaning

8 Instruction cache miss
9 Data cache miss or memory-mapped I/O access

10 Data cache writeback
11 Instruction TLB miss
12 Data TLB miss

Table 3.2: mhpmevent Register Description



Chapter 4

E51 RISC-V Monitor Core

The E51 monitor core is a 64-bit embedded RISC-V microcontroller, including an instruction fetch
unit, an execution pipeline, and a data memory system. The monitor core supports the standard
RISC-V RV64IMAC user-level instruction set, with machine and user privilege modes.

4.1 E51 Instruction Fetch Unit
The E51 instruction fetch unit consists of 2-way set-associative 4 KiB instruction cache that sup-
ports 64 B cache lines. The access latency is one clock cycle.

The instruction memory system is not coherent with the data memory system. Writes to memory
may be synchronized with the instruction fetch stream with a FENCE.I instruction.

The branch predictor comprises a branch target buffer (BTB), which predicts the target of taken
branches and jumps; a branch history table (BHT), which predicts the direction of conditional
branches; and a return-address stack (RAS), which predicts the target of procedure returns. The
BTB is configured to hold 40 entries. The RAS is configured to hold 2 entries. The BHT uses a
gshare prediction scheme with 7 bits of global history to access an array of 128 two-bit saturating
counters. The branch predictor has a one-cycle latency, so that correctly predicted control-flow
instructions result in no penalty.

4.2 E51 Execution Pipeline
The E51 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:
instruction fetch, instruction decode and register fetch, execute, data memory access, and register
writeback.

The pipeline has a peak execution rate of one instruction per clock cycle. It is fully bypassed, so
that most instructions have an apparent one-cycle result latency. There are several exceptions:

• LD and LW have a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• MUL, MULW, MULH, MULHU, MULHSU, DIV, DIVU, REM, REMU, DIVW, DIVUW, REMW,
and REMUW have between a 2-cycle and 66-cycle result latency, depending on operand
values.

10
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• CSR reads have a three-cycle result latency.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions may
be scheduled to avoid stalls.

The iterative multiplier is configured to produce 16-bits per cycle with an early-out option. The
iterative divider has latency of between three and 66 cycles and an early-out option.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-
predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps incur
a three-cycle penalty.

Most CSR writes result in a pipeline flush, a five-cycle penalty.

4.3 E51 Data Memory System
The E51 data memory system consists of a 8 KiB tightly-integrated RAM (TIM). The access latency
is two clock cycles for full words and three clock cycles for smaller quantities. Misaligned accesses
are not supported in hardware and result in a trap to support software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle. Loads
to addresses currently in the store pipeline result in a five-cycle penalty.



Chapter 5

U54-MC Core Complex Interfaces

This chapter describes the primary interfaces to the U54-MC Core Complex.

5.1 Clock & Reset
The core clock, rtc toggle, clock, reset, and reset vector inputs are described in Table 5.1.

The relationship between the clock input frequencies are as follows: core clock ≥ clock > 2×
rtc toggle

Name Direction Width Description
core clock Input 1 The core pipeline and cache clock.

clock Input 1 Clock input to the PLIC, Clint, Debug, and the ex-
ternal ports. Has a 1/m frequency relationship with
core clock where m ≥ 1.

rtc toggle Input 1 The Real Time Clock input. Must run at strictly less
than half the rate of clock.

reset Input 1 Synchronous reset signal. Active high. Must be as-
serted for 16 cycles of clock and synchronously de-
asserted.

reset vector Input 38-bit Reset Vector Address. Implementations MUST set
this signal to a valid address.

Table 5.1: Clock and Reset Interfaces

5.1.1 Real Time Clock (rtcToggle)
As defined in the RISC-V privileged specification, RISC-V implementations must expose a real-
time counter via the mtime register. In the U54-MC Core Complex the rtcToggle input is used
as the real-time counter. rtcToggle must run at strictly less than half the frequency of clock.
Furthermore, for RISC-V compliance, the frequency of rtcToggle must remain constant, and
software must be made aware of this frequency.

12
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5.1.2 System Clock (clock)
The system clock is used to decouple the frequency of the core from that of some of the on core
complex peripherals. clock has a 1/m frequency relationship with core clock where m is any
positive integer. Additionally, these clocks must be phase-aligned.

The peripherals connected to clock are: PLIC, CLINT, Debug, and the ports.

5.2 Ports
This section will describe all of the Ports in the U54-MC Core Complex.

5.2.1 Front Port
The U54-MC Core Complex has a master bus interface called Front Port. This port can be used
by external masters to read and write into the local U54-MC Core Complex DTIM and to the ITIM
address space. Note that an external master using the Front Port can trigger the I-Cache to
reconfigure itself by using the procedure described in Section 3.1.1.

Reads and writes to the Font Port interface can also pass through to the other RISC-V Core IP
ports if a transaction falls within their address space. Transactions through the Front Port do not
pass through a PMP.

The Front Port is described in Table 5.2.

5.2.2 Memory Port
The U54-MC Core Complex Memory Port is used to access off core complex cacheable address
space, typically main memory. The System Port is mapped into two address ranges; one in the
lower 32-bits of the address map, and one above 32-bits.

The Memory Port is described in Table 5.2.

5.2.3 System Port
The U54-MC Core Complex System Port is used to access off core complex un-cached address
space typically for accessing higher bandwidth peripherals. The System Port is mapped into two
address ranges; one in the lower 32-bits of the address map, and one above 32-bits.

The System Port is described in Table 5.2.

5.2.4 Peripheral Port
The U54-MC Core Complex Peripheral Port is used to access off core complex address space,
typically peripheral devices. The System Port is mapped into two address ranges; one in the lower
32-bits of the address map, and one above 32-bits.

The Peripheral Port is described in Table 5.2.
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Name Base Address Top Protocol Description
front port tl 0 NA NA TL-C 64-bit data width. Master

Bus interface allows for other
bus masters to access U54-
MC Core Complex address
space.

periph port tl 0 0x2000 0000 0x4FFF FFFF TL-UL 64-bit data width.
Synchronous to clock.0x01 0000 0000 0x0F FFFF FFFF

system port tl 0 0x5000 0000 0x7FFF FFFF TL-UH 64-bit data width.
Synchronous to clock.0x10 0000 0000 0x1F FFFF FFFF

memory port tl 0 0x8000 0000 0xFFFF FFFF TL-C Cacheable. 128-bit data
width. Synchronous to clock.0x20 0000 0000 0x3F FFFF FFFF

Table 5.2: U54-MC Core Complex Ports

5.3 Local Interrupts
Local interrupts are interrupts which can be connected to peripheral sources and signaled directly
to an individual hart. Please see Chapter 7 for a detailed description of the U54-MC Core Complex
local interrupts.

Name Direction Width Description
local interrupts 0 Input 48 E51 Local Interrupts. These are level-based interrupt

signals connected directly to the core and must be
synchronous with core clock.

local interrupts 1 Input 48 U54 Hart 1 Local Interrupts. These are level-based
interrupt signals connected directly to the core and
must be synchronous with core clock.

local interrupts 2 Input 48 U54 Hart 2 Local Interrupts. These are level-based
interrupt signals connected directly to the core and
must be synchronous with core clock.

local interrupts 3 Input 48 U54 Hart 3 Local Interrupts. These are level-based
interrupt signals connected directly to the core and
must be synchronous with core clock.

local interrupts 4 Input 48 U54 Hart 4 Local Interrupts. These are level-based
interrupt signals connected directly to the core and
must be synchronous with core clock.

Table 5.3: Local Interrupt Interface

5.4 Global Interrupts
The global interrupt signals are inputs into the U54-MC Core Complex PLIC. Note that there
are 511 total Global Interrupts, however some on core complex devices are pre-connected to the
PLIC, such as the L2 Cache Controller. Only 508 global interrupt signals are exposed at the
top level.
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Name Direction Width Description
global interrupts Input 508 External interrupts from off-chip or peripheral

sources. These are level-based interrupt signals
connected to the PLIC and must be synchronous
with clock.

Table 5.4: External Interrupt Interface

5.5 Unrecoverable Errors
The unrecoverable error signals are generated by the ECC logic when a multi-bit error is detected.
All unrecoverable error signals are positive level triggered and remain high until reset.

Name Direction Width Description
halt from tile 0 Output 1 Signals an unrecoverable error has occurred

in hart 0
halt from tile 1 Output 1 Signals an unrecoverable error has occurred

in hart 1
halt from tile 2 Output 1 Signals an unrecoverable error has occurred

in hart 2
halt from tile 3 Output 1 Signals an unrecoverable error has occurred

in hart 3
halt from tile 4 Output 1 Signals an unrecoverable error has occurred

in hart 4
halt from l2 0 Output 1 Signals an unrecoverable error has occurred

in the L2 Cache
Table 5.5: Unrecoverable Error Signals

5.6 Test Mode Reset Interface
The test mode reset interface provides a mechanism for the internal RISC-V Core IP debug reset
to be driven directly. Note that this has no relationship to general RISC-V Core IP ‘reset‘.

Name Direction Width Description
debug psd test mode Input 1 When asserted, reset synchronization logic

in the RISC-V Core IP is bypassed
debug psd test mode reset Input 1 This signal resets debug logic in the RISC-

V Core IP when debug psd test mode is also
asserted

Table 5.6: Test Mode Reset Interface

5.7 Debug Output Signals
Signals which are outputs from the Debug Module are shown in Table 5.7.
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Name Direction Width Description
ndreset Output 1 This signal is a reset signal driven by the Debug

Logic of the chip. It can be used to reset parts of the
SoC or the entire chip. It should NOT be wired into
logic which feeds back into the jtag reset signal for
this block. This signal may be left unconnected

dmactive Output 1 This signal, 0 at reset, indicates that debug logic is
active. This may be used to prevent power gating of
debug logic, etc. It may be left unconnected

Table 5.7: External Debug Logic Control Pins

5.8 JTAG Debug Interface Pinout
SiFive uses the industry-standard JTAG interface which includes the four standard signals, TCK,
TMS, TDI, and TDO. A test logic reset signal must also be driven on the jtag reset input. This
reset is synchronized internally to the design. The test logic reset must be pulsed before the core
reset is deasserted.

Name Direction Width Description
jtag TCK Input 1 JTAG Test Clock
jtag TMS Input 1 JTAG Test Mode Select
jtag TDI Input 1 JTAG Test Data Input

jtag TDO data Output 1 JTAG Test Data Output
jtag TDO driven Output 1 JTAG Test Data Output Enable

jtag reset Input 1 Active-high Reset
jtag mfr id Input 11 The SoC Manufacturer ID which will be reported by

the JTAG IDCODE instruction.
Table 5.8: SiFive standard JTAG interface for off-chip external TAPC and on-chip embedded TAPC.



Chapter 6

Memory Map

The overall physical memory map of the U54-MC Core Complex RISC-V Core IP series is shown
in Tables 6.1. The U54-MC Core Complex is configured with a 38-bit physical address space.

17
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Base Top Attr. Description Notes
0x0000 0000 0x0000 00FF Reserved

Debug Address Space0x0000 0100 0x0000 0FFF RWX Debug
0x0000 1000 0x00FF FFFF Reserved
0x0100 0000 0x0100 1FFF RWX E51 DTIM (8 KiB)

On Core Complex
Address Space

0x0100 2000 0x017F FFFF Reserved
0x0180 0000 0x0180 1FFF RWX E51 Hart 0 ITIM
0x0180 2000 0x0180 7FFF Reserved
0x0180 8000 0x0180 EFFF RWX U54 Hart 1 ITIM
0x0180 F000 0x0180 FFFF Reserved
0x0181 0000 0x0181 6FFF RWX U54 Hart 2 ITIM
0x0181 7000 0x0181 7FFF Reserved
0x0181 8000 0x0181 EFFF RWX U54 Hart 3 ITIM
0x0181 F000 0x0181 FFFF Reserved
0x0182 0000 0x0182 6FFF RWX U54 Hart 4 ITIM
0x0182 7000 0x01FF FFFF Reserved
0x0200 0000 0x0200 FFFF RW CLINT
0x0201 0000 0x0201 0FFF RW Cache Controller
0x0201 1000 0x07FF FFFF Reserved
0x0800 0000 0x09FF FFFF RWX L2-LIM
0x0A00 0000 0x0BFF FFFF RWXC L2 Zero Device
0x0C00 0000 0x0FFF FFFF RW PLIC
0x1000 0000 0x1FFF FFFF Reserved
0x2000 0000 0x4FFF FFFF RWX Peripheral Port

Off Core Complex
Address Space

0x5000 0000 0x7FFF FFFF RWXC System Port
0x8000 0000 0xFFFF FFFF RWXC Memory Port

0x01 0000 0000 0x0F FFFF FFFF RWX Peripheral Port
0x10 0000 0000 0x1F FFFF FFFF RWX System Port
0x20 0000 0000 0x3F FFFF FFFF RWXC Memory Port

Table 6.1: U54-MC Core Complex Physical Memory Map.
Memory Attributes: R - Read W - Write X - Execute C - Cacheable



Chapter 7

Interrupts

This chapter describes how interrupt concepts in the RISC-V architecture apply to the U54-MC
Core Complex. The definitive resource for information about the RISC-V interrupt architecture is
The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2].

7.1 Interrupt Concepts
Each hart in SiFive RISC-V Core IP has support for the following interrupts: local (including soft-
ware and timer), and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This
allows for reduced interrupt latency as there is no arbitration required to determine which hart will
service a given request, nor additional memory accesses required to determine the cause of the
interrupt. Software and timer interrupts are local interrupts generated by the Core Local Interruptor
(CLINT).

Global interrupts by contrast, are routed through a Platform-Level Interrupt Controller (PLIC), which
can direct interrupts to any hart in the system via the external interrupt. Decoupling global inter-
rupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting a
broad range of attributes like the number of interrupts and the prioritization and routing schemes.

By default all interrupts are are handled in machine mode. In SiFive RISC-V Core IP IP which
support supervisor mode, it is possible to selectively delegate interrupts to supervisor mode.

This chapter describes the U54-MC Core Complex interrupt architecture. Chapter 8 describes the
global interrupt architecture and the PLIC design. Chapter 9 describes the Core Local Interruptor.

The U54-MC Core Complex interrupt architecture is depicted in Figure 7.1.
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U54-MC RISC-V Core IP

...

...

E51
Hart0

M mode Software Interrupt

M mode Timer Interrupt

Local Interrupt 0

Local Interrupt 47

U54
Hart1

M mode Software Interrupt

M mode Timer Interrupt

PLIC

CLINT

M mode External Interrupt

M and S mode External Interrupt

Local Interrupt 0

Local Interrupt 47

Global Interrupts (508)

...

U54
Hart4

M mode Software Interrupt

M mode Timer Interrupt

M and S mode External Interrupt

Local Interrupt 0

Local Interrupt 47

...

L2 Cache 3

Figure 7.1: U54-MC Core Complex Interrupt Architecture Block Diagram.

7.2 Interrupt Entry and Exit
When a RISC-V hart takes an interrupt the following will occur:

• The value of mstatus.MIE is copied into mstatus.MPIE, then mstatus.MIE is cleared, effec-
tively disabling interrupts.

• The current pc is copied into the mepc register, and then pc is set to the value of mtvec. In the
case where vectored interrupts are enabled, pc is set to mtvec.BASE + 4×exception code.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

At this point control is handed over to software in the interrupt handler with interrupts disabled. In-
terrupts can be re-enabled by explicitly setting mstatus.MIE, or by executing an MRET instruction
to exit the handler. When an MRET instruction is executed, the following will occur:
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• The privilege mode is set to the value encoded in mstatus.MPP.

• The value of mstatus.MPIE is copied into mstatus.MIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC-V interrupts are described in Sec-
tion 7.3.

7.3 Interrupt Control Status Registers
The SiFive U54-MC Core Complex specific implementation of interrupt CSRs is described below.
For a complete description of RISC-V interrupt behavior and how to access CSRs, please consult
The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2].

7.3.1 Machine Status Register (mstatus)
The mstatus register keeps track of and controls the hart’s current operating state including
whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in
the U54-MC Core Complex is provided in Table 7.1; note that this is not a complete description of
mstatus as it contains fields unrelated to interrupts. For the full description of mstatus please con-
sult the The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 [2].

Machine Status Register
CSR mstatus

Bits Field Name Attr. Description
0 Reserved WPRI
1 SIE RW Supervisor Interrupt Enable
2 Reserved WPRI
3 MIE RW Machine Interrupt Enable
4 Reserved WPRI
5 SPIE RW Supervisor Previous Interrupt Enable
6 Reserved WPRI
7 MPIE RW Machine Previous Interrupt Enable
8 SPP RW Supervisor Previous Privilege Mode

[10:9] Reserved WPRI
[12:11] MPP RW Machine Previous Privilege Mode

Table 7.1: U54-MC Core Complex mstatus register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual
interrupt in the mie register described in Section 7.3.2.

7.3.2 Machine Interrupt Enable Register (mie)
Individual interrupts are enabled by setting the appropriate bit in the mie register. The U54-MC
Core Complex mie register is described in Table 7.2.
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Machine Interrupt Enable Register
CSR mie

Bits Field Name Attr. Description
0 Reserved WIRI
1 SSIE RW Supervisor Software Interrupt Enable
2 Reserved WIRI
3 MSIE RW Machine Software Interrupt Enable
4 Reserved WIRI
5 STIE RW Supervisor Timer Interrupt Enable
6 Reserved WIRI
7 MTIE RW Machine Timer Interrupt Enable
8 Reserved WIRI
9 SEIE RW Supervisor External Interrupt Enable

10 Reserved WIRI
11 MEIE RW Machine External Interrupt Enable

[15:12] Reserved WPRI
16 LIE0 RW Local Interrupt 0 Enable
17 LIE1 RW Local Interrupt 1 Enable
18 LIE2 RW Local Interrupt 2 Enable

...
63 LIE47 RW Local Interrupt 47 Enable

Table 7.2: U54-MC Core Complex mie register

7.3.3 Machine Interrupt Pending (mip)
The machine interrupt pending (mip) register indicates which interrupts are currently pending. The
U54-MC Core Complex mip register is described in Table 7.3.
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Machine Interrupt Pending Register
CSR mip

Bits Field Name Attr. Description
0 Reserved WPRI
1 SSIP RW Supervisor Software Interrupt Pending
2 Reserved WPRI
3 MSIP RO Machine Software Interrupt Pending
4 Reserved WPRI
5 STIP RW Supervisor Timer Interrupt Pending
6 Reserved WPRI
7 MTIP RO Machine Timer Interrupt Pending
8 Reserved WPRI
9 SEIP RW Supervisor External Interrupt Pending

10 Reserved WPRI
11 MEIP RO Machine External Interrupt Pending

[15:12] Reserved WPRI
16 LIP0 RO Local Interrupt 0 Pending
17 LIP1 RO Local Interrupt 1 Pending
18 LIP2 RO Local Interrupt 2 Pending

...
63 LIP47 RO Local Interrupt 47 Pending

Table 7.3: U54-MC Core Complex mip register

7.3.4 Machine Cause Register (mcause)
When a trap is taken in machine mode, mcause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause

to be set to 0x8000 0000 0000 0007. mcause is also used to indicate the cause of synchronous
exceptions, in which case the most-significant bit of mcause is set to 0. Refer to Table 7.5 for a list
of synchronous exception codes.

Machine Cause Register
CSR mcause

Bits Field Name Attr. Description
[62:0] Exception Code WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0 otherwise.
Table 7.4: U54-MC Core Complex mcause register
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Interrupt Exception Codes
Interrupt Exception Code Description

1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 8 Reserved
1 11 Machine external interrupt
1 12–15 Reserved
1 16 Local Interrupt 0
1 17 Local Interrupt 1
1 18–62 . . .
1 63 Local Interrupt 47
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–31 Reserved

Table 7.5: U54-MC Core Complex mcause Exception Codes
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7.3.5 Machine Trap Vector (mtvec)
By default, all interrupts trap to a single address defined in the mtvec register. It is up to the
interrupt handler to read mcause and react accordingly. RISC-V and the U54-MC Core Complex
also support the ability to optionally enable interrupt vectors. When vectoring is enabled, each
interrupt defined in mie will trap to its own specific interrupt handler. This allows all local interrupts
to trap to exclusive handlers. With vectoring enabled, all global interrupts will trap to a single global
interrupt vector.

Vectored interrupts are enabled when the MODE field of the mtvec register is set to 1.

Machine Trap Vector Register
CSR mtvec

Bits Field Name Attr. Description
[1:0] MODE WARL MODE determines whether or not interrupt vectoring is

enabled. The encoding for the MODE filed is described
in Table 7.7

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be aligned on a
128-byte boundary when MODE=1. Note, BASE[1:0]
is not present in this register and is implicitly 0.

Table 7.6: U54-MC Core Complex mtvec register

MODE Field Encoding mtvec.MODE

Value Name Description
0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4×cause.
≥2 Reserved

Table 7.7: Encoding of mtvec.MODE

If vectored interrupts are disabled (mtvec.MODE=0), all interrupts trap to the mtvec.BASE ad-
dress. If vectored interrupts are enabled (mtvec.MODE=1), interrupts set the pc to mtvec.BASE +
4×exception code. For example, if a machine timer interrupt is taken, the pc is set to mtvec.BASE

+ 0x1C. Typically, the trap vector table is populated with jump instructions to transfer control to
interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus, when
interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global interrupt.
See Table 7.5 for the U54-MC Core Complex interrupt exception code values.

7.4 Supervisor Mode Interrupts
The U54-MC Core Complex supports the ability to selectively direct interrupts and exceptions to
supervisor mode resulting in improved performance by eliminating the need for additional mode
changes.

This capability is enabled by the interrupt and exception delegation CSRs; mideleg, and medeleg

respectively. Supervisor interrupts and exceptions can be managed via supervisor versions of the
interrupt CSRs, specifically: stvec, sip, and sie, and scause.
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Machine mode software can also directly write to the sip register which effectively pends an
interrupt to supervisor mode. This is especially useful for timer and software interrupts as it may
be desired to handle these interrupts in both machine mode, and supervisor mode.

The delegation and supervisor CSRs are described in the sections below. The definitive resource
for information about RISC-V supervisor interrupts is The RISC-V Instruction Set Manual, Volume
II: Privileged Architecture, Version 1.10 [2].

7.4.1 Delegation Registers
By default all traps are handled in machine mode. Machine mode software can selectively delegate
interrupts and exceptions to supervisor mode by setting the corresponding bits in mideleg and
medeleg CSRs. The exact mapping is provided in Table 7.8 and Table 7.9 and match the mcause

interrupt and exception codes defined in Table 7.5.

Upon taking a delegated trap, mcause is copied into scause and mepc is copied into sepc and the
hart will trap to the stvec address in supervisor mode.

Note that local interrupts can not be delegated to supervisor mode.

Machine Interrupt Delegation Mapping
CSR mideleg

Bits Attr. Description
0 WARL Reserved
1 WARL Supervisor software interrupt

[4:2] WARL Reserved
5 WARL Supervisor timer interrupt

[8:6] WARL Reserved
9 WARL Supervisor external interrupt

[63:8] WARL Reserved
Table 7.8: U54-MC Core Complex mideleg register
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Machine Exception Delegation Mapping
CSR medeleg

Bits Attr. Description
0 WARL Instruction address misaligned
1 WARL Instruction access fault
2 WARL Illegal instruction
3 WARL Breakpoint
4 WARL Load address misaligned
5 WARL Load access fault
6 WARL Store/AMO address misaligned
7 WARL Store/AMO access fault
8 WARL Environment call from U-mode
9 WARL Environment call from S-mode

[11:10] WARL Reserved
12 WARL Instruction page fault
13 WARL Load page fault
14 WARL Reserved
15 WARL Store/AMO page fault exception

[63:16] WARL Reserved
Table 7.9: U54-MC Core Complex medeleg register

7.4.2 Supervisor Status Register (sstatus)
Similar to machine mode, supervisor mode has a register dedicated to keeping track of the hart’s
current state called sstatus. sstatus is effectively a restricted view of mstatus, described in
Section 7.3.1, in that changes made to sstatus are reflected in mstatus and vice-versa with the
exception of the machine mode fields which are not visible in sstatus.

A summary of the sstatus fields related to interrupts in the U54-MC Core Complex is provided
in Table 7.1; note that this is not a complete description of sstatus as it contains fields unrelated
to interrupts. For the full description of sstatus please consult the The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, Version 1.10 [2].

Supervisor Status Register
CSR mstatus

Bits Field Name Attr. Description
0 Reserved WPRI
1 SIE RW Supervisor Interrupt Enable

[4:2] Reserved WPRI
5 SPIE RW Supervisor Previous Interrupt Enable

[7:6] Reserved WPRI
8 SPP RW Supervisor Previous Privilege Mode

[12:9] Reserved WPRI
Table 7.10: U54-MC Core Complex sstatus register (partial)

Interrupts are enabled by setting the SIE bit in sstatus and by enabling the desired individual
interrupt in the sie register described in Section 7.4.3.
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7.4.3 Supervisor Interrupt Enable Register (sie)
Supervisor interrupts are enabled by setting the appropriate bit in the sie register. The U54-MC
Core Complex sie register is described in Table 7.11.

Supervisor Interrupt Enable Register
CSR sie

Bits Field Name Attr. Description
0 Reserved WIRI
1 SSIE RW Supervisor Software Interrupt Enable

[4:2] Reserved WIRI
5 STIE RW Supervisor Timer Interrupt Enable

[8:6] Reserved WIRI
9 SEIE RW Supervisor External Interrupt Enable

[63:10] Reserved WIRI
Table 7.11: U54-MC Core Complex sie register

7.4.4 Supervisor Interrupt Pending (sip)
The supervisor interrupt pending (sip) register indicates which interrupts are currently pending.
The U54-MC Core Complex sip register is described in Table 7.12.

Supervisor Interrupt Pending Register
CSR mip

Bits Field Name Attr. Description
0 Reserved WPRI
1 SSIP RW Supervisor Software Interrupt Pending

[4:2] Reserved WPRI
5 STIP RW Supervisor Timer Interrupt Pending

[8:6] Reserved WPRI
9 SEIP RW Supervisor External Interrupt Pending

[63:10] Reserved WPRI
Table 7.12: U54-MC Core Complex sip register

7.4.5 Supervisor Cause Register (scause)
When a trap is taken in supervisor mode, scause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
scause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in sip. For example, a Supervisor Timer Interrupt causes scause

to be set to 0x8000 0000 0000 0005. scause is also used to indicate the cause of synchronous
exceptions, in which case the most-significant bit of scause is set to 0. Refer to Table 7.14 for a
list of synchronous exception codes.
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Supervisor Cause Register
CSR scause

Bits Field Name Attr. Description
[62:0] Exception Code WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0 otherwise.
Table 7.13: U54-MC Core Complex scause register

Supervisor Interrupt Exception Codes
Interrupt Exception Code Description

1 0 Reserved
1 1 Supervisor software interrupt
1 2-4 Reserved
1 5 Supervisor timer interrupt
1 6-8 Reserved
1 9 Supervisor external interrupt
1 ≥ 10 Reserved
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Reserved
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9-11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 ≥ 16 Reserved
Table 7.14: U54-MC Core Complex scause Synchronous Exception Codes
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7.4.6 Supervisor Trap Vector (stvec)
By default, all interrupts trap to a single address defined in the stvec register. It is up to the
interrupt handler to read scause and react accordingly. RISC-V and the U54-MC Core Complex
also support the ability to optionally enable interrupt vectors. When vectoring is enabled, each
interrupt defined in sie will trap to its own specific interrupt handler.

Vectored interrupts are enabled when the MODE field of the stvec register is set to 1.

Supervisor Trap Vector Register
CSR stvec

Bits Field Name Attr. Description
[1:0] MODE WARL MODE determines whether or not interrupt vectoring is

enabled. The encoding for the MODE filed is described
in Table 7.7

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be aligned on a
128-byte boundary when MODE=1. Note, BASE[1:0]
is not present in this register and is implicitly 0.

Table 7.15: U54-MC Core Complex stvec register

MODE Field Encoding stvec.MODE

Value Name Description
0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4×cause.
≥2 Reserved

Table 7.16: Encoding of stvec.MODE

If vectored interrupts are disabled (stvec.MODE=0), all interrupts trap to the stvec.BASE ad-
dress. If vectored interrupts are enabled (stvec.MODE=1), interrupts set the pc to stvec.BASE +
4×exception code. For example, if a supervisor timer interrupt is taken, the pc is set to stvec.BASE

+ 0x14. Typically, the trap vector table is populated with jump instructions to transfer control to
interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All supervisor external interrupts (global interrupts) are mapped to exception code of 9. Thus,
when interrupt vectoring is enabled, the pc is set to address stvec.BASE + 0x24 for any global
interrupt.

Please see Table 7.14 for the U54-MC Core Complex supervisor mode interrupt exception code
values.

7.5 Interrupt Priorities
Local interrupts have higher priority than global interrupts. As such, if a local and a global interrupt
arrive at a hart on the same cycle, the local interrupt will be taken if it is enabled.

Priorities of local interrupts are determined by the local interrupt ID, with Local Interrupt 47 being
highest priority. For example, if both Local Interrupt 47 and Local Interrupt 6 arrive in the same
cycle, Local Interrupt 47 will be taken.
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Local Interrupt 47 is the highest-priority interrupt in the U54-MC Core Complex for a given hart.
Given that Local Interrupt 47’s exception code is also the greatest, it occupies the last slot in
the interrupt vector table. This unique position in the vector table allows for Local Interrupt 47’s
trap handler to be placed in-line, without the need for a jump instruction as with other interrupts
when operating in vectored mode. Hence, Local Interrupt 47 should be used for the most latency-
sensitive interrupt in the system for a given hart. Individual priorities of global interrupts are deter-
mined by the PLIC, as discussed in Chapter 8.

U54-MC Core Complex interrupts are prioritized as follows, in decreasing order of priority:

• Local Interrupt 47

• . . .

• Local Interrupt 0

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

• Supervisor external interrupts

• Supervisor software interrupts

• Supervisor timer interrupts

7.6 Interrupt Latency
Interrupt latency for the U54-MC Core Complex, as counted by the numbers of cycles it takes from
signaling of the interrupt to the hart to the first instruction fetch of the handler, is 4 cycles.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is
clocked by clock. This means that the total latency, in cycles, for a global interrupt is:
4 + 3× (core clock Hz÷clock Hz).

This is a best case cycle count and assumes the handler is cached or located in ITIM. It does not
take into account additional latency from a peripheral source.

Additionally, the hart will not abandon a Divide instruction in flight. This means if an interrupt
handler tries to use a register which is the destination register of a divide instruction, the pipeline
will stall until the divide is complete.



Chapter 8

Platform-Level Interrupt Controller
(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the SiFive
U54-MC Core Complex. The PLIC complies with The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, Version 1.10 [2], and can support a maximum of 511 external interrupt
sources with 7 priority levels.

The U54-MC Core Complex PLIC resides is in the clock timing domain allowing for relaxed timing
requirements. The latency of global interrupts, as perceived by a hart, increases with the ratio of
the core clock frequency and the clock frequency.

8.1 Memory Map
The memory map for the SiFive U54-MC Core Complex PLIC control registers is shown in Ta-
ble 8.2. The PLIC memory map has been designed to only require naturally aligned 32-bit memory
accesses.

32
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PLIC Memory Map
Address Width Attr. Description Notes

0x0C00 0000 Reserved
0x0C00 0004 4B RW source 1 priority

See Section 8.3 for more
information

0x0C00 0008 4B RW source 2 priority
...

0x0C00 0800 4B RW source 511 priority
0x0C00 0804

... Reserved
0x0C00 0FFF

0x0C00 1000 4B RO Start of pending array
See Section 8.4 for more
information

...

0x0C00 1014 4B RO Last word of pending array
0x0C00 1018

... Reserved
0x0C00 1FFF

0x0C00 2000 4B RW Start of Hart 0 M-mode enables
See Section 8.5 for more
information

...

0x0C00 2014 4B RW End of Hart 0 M-mode enables
0x0C00 2018

... Reserved
0x0C00 207F

0x0C00 2080 4B RW Hart 1 M-mode enables

Same layout as Hart 0
M-mode enables

...

0x0C00 2094 4B RW End of Hart 1 M-mode enables
0x0C00 2100 4B RW Hart 1 S-mode enables

...

0x0C00 2114 4B RW End of Hart 1 S-mode enables
0x0C00 2180 4B RW Hart 2 M-mode enables

...

0x0C00 2194 4B RW End of Hart 2 M-mode enables
0x0C00 2200 4B RW Hart 2 S-mode enables

...

0x0C00 2214 4B RW End of Hart 2 S-mode enables
0x0C00 2280 4B RW Hart 3 M-mode enables

...

0x0C00 2294 4B RW End of Hart 3 M-mode enables
0x0C00 2300 4B RW Hart 3 S-mode enables

...

0x0C00 2314 4B RW End of Hart 3 S-mode enables
0x0C00 2380 4B RW Hart 4 M-mode enables

...

0x0C00 2394 4B RW End of Hart 4 M-mode enables
0x0C00 2400 4B RW Hart 4 S-mode enables

...

0x0C00 2414 4B RW End of Hart 4 S-mode enables
Continued on next page.

Table 8.1: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are supported.
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PLIC Register Map (Continued)
Address Width Attr. Description Notes

0x0C00 2480

... Reserved
0x0C1F FFFF

0x0C20 0000 4B RW Hart 0 M-mode priority threshold

See Section 8.6 and
Section 8.7 for more
information

0x0C20 0004 4B RW Hart 0 M-mode claim/complete
0x0C20 1000 4B RW Hart 1 M-mode priority threshold
0x0C20 1004 4B RW Hart 1 M-mode claim/complete
0x0C20 2000 4B RW Hart 1 S-mode priority threshold
0x0C20 2004 4B RW Hart 1 S-mode claim/complete
0x0C20 3000 4B RW Hart 2 M-mode priority threshold
0x0C20 3004 4B RW Hart 2 M-mode claim/complete
0x0C20 4000 4B RW Hart 2 S-mode priority threshold
0x0C20 4004 4B RW Hart 2 S-mode claim/complete
0x0C20 5000 4B RW Hart 3 M-mode priority threshold
0x0C20 5004 4B RW Hart 3 M-mode claim/complete
0x0C20 6000 4B RW Hart 3 S-mode priority threshold
0x0C20 6004 4B RW Hart 3 S-mode claim/complete
0x0C20 7000 4B RW Hart 4 M-mode priority threshold
0x0C20 7004 4B RW Hart 4 M-mode claim/complete
0x0C20 8000 4B RW Hart 4 S-mode priority threshold
0x0C20 8004 4B RW Hart 4 S-mode claim/complete

Table 8.2: SiFive PLIC Register Map Continued. Only naturally aligned 32-bit memory accesses are sup-
ported.
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8.2 Interrupt Sources
The U54-MC Core Complex is delivered with several pre-integrated, on core complex peripherals
which have interrupt signals already connected to the PLIC. The mapping of these on core complex
peripheral interrupts to their corresponding ID’s are provided in Table 8.3.

PLIC Interrupt ID Mapping
IRQ Peripheral Description

0 N/A Global Interrupt 0 is defined to mean “no interrupt”
and is not connected to a peripheral.

1 Off Core Complex Connected to global interrupt[0] signal de-
scribed in Section 5.4.

2 Off Core Complex Connected to global interrupt[1] signal de-
scribed in Section 5.4.

. . .
508 Off Core Complex Connected to global interrupt[507] signal de-

scribed in Section 5.4.
509 L2 Cache Controller Connected to DirError and interrupts when a L2

meta-data error has occurred.
510 L2 Cache Controller Connected to DataError and interrupts when a L2

data error has occurred.
511 L2 Cache Controller Connected to DataFail and interrupts when an un-

correctable L2 data error has occurred.
Table 8.3: PLIC Interrupt ID Mapping

The U54-MC Core Complex has 511 interrupt sources exposed at the top level via the
global interrupts signals. These signals are positive-level triggered.

Any unused global interrupts inputs should be tied to logic 0.

In the PLIC, as specified in The RISC-V Instruction Set Manual, Volume II: Privileged Ar-
chitecture, Version 1.10 [2], Global Interrupt ID 0 is defined to mean “no interrupt” , hence
global interrupts[0] corresponds to PLIC Interrupt ID 1.

8.3 Interrupt Priorities
Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped
priority register. The U54-MC Core Complex supports 7 levels of priority. A priority value of 0 is
reserved to mean “never interrupt” and effectively dissables the interrupt. Priority 1 is the lowest
active priority, and priority 7 is the highest. Ties between global interrupts of the same priority are
broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority. Please
see Table 8.4 for the detailed register description.
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PLIC Interrupt Priority Register (priority)
Base Address 0x0C00 0000 + 4×Interrupt ID

Bits Field Name Attr. Rst. Description
[2:0] Priority WARL X Sets the priority for a given global interrupt.
31:3] Reserved WIRI X

Table 8.4: PLIC Interrupt Priority Registers

8.4 Interrupt Pending Bits
The current status of the interrupt source pending bits in the PLIC core can be read from the
pending array, organized as 15 words of 32 bits. The pending bit for interrupt ID N is stored in
bit (N mod 32) of word (N/32). As such, the U54-MC Core Complex has 15 interrupt pending
registers. Bit 0 of word 0, which represents the non-existent interrupt source 0, is hardwired to
zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then performing
a claim as as described in Section 8.7.

PLIC Interrupt Pending Register 1 (pending1)
Base Address 0x0C00 1000

Bits Field Name Attr. Rst. Description
0 Interrupt 0 Pending RO 0 Non-existent global interrupt 0 is hardwired to

zero
1 Interrupt 1 Pending RO 0 Pending bit for global interrupt 1
2 Interrupt 2 Pending RO 0 Pending bit for global interrupt 2

...
31 Interrupt 31 Pending RO 0 Pending bit for global interrupt 31

Table 8.5: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 15 (pending15)
Base Address 0x0C00 103C

Bits Field Name Attr. Rst. Description
1 Interrupt 480 Pending RO 0 Pending bit for global interrupt 480

...
31 Interrupt 511 Pending RO 0 Pending bit for global interrupt plicinputs

Table 8.6: PLIC Interrupt Pending Register 15

8.5 Interrupt Enables
Each global interrupt can be enabled by setting the corresponding bit in the enables register.
The enables registers are accessed as a contiguous array of 15×32-bit words, packed the same
way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0 and is
hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.
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PLIC Interrupt Enable Register 1 (enable1)
Base Address 0x0C00 2000

Bits Field Name Attr. Rst. Description
0 Interrupt 0 Enable RW X Non-existent global interrupt 0 is hardwired to

zero
1 Interrupt 1 Enaable RW X Enable bit for global interrupt 1
2 Interrupt 2 Enaable RW X Enable bit for global interrupt 2

...
31 Interrupt 31 Enaable RW X Enable bit for global interrupt 31

Table 8.7: PLIC Interrupt Enable Register 1

PLIC Interrupt Enable Register 15 (enable15)
Base Address 0x0C00 203C

Bits Field Name Attr. Rst. Description
0 Interrupt 480 Enable RW X Enable bit for global interrupt 480

...
31 Interrupt 511 Enable RW X Enable bit for global interrupt 511

Table 8.8: PLIC Interrupt Enable Register 15

8.6 Priority Thresholds
The U54-MC Core Complex supports setting of a interrupt priority threshold via the threshold

register. The threshold is a WARL field, where the U54-MC Core Complex supports a maximum
threshold of 7.

The U54-MC Core Complex will mask all PLIC interrupts of a priority less than or equal to
threshold. For example, a threshold value of zero permits all interrupts with non-zero prior-
ity, whereas a value of 7 masks all interrupts.

PLIC Interrupt Priority Threshold Register (threshold)
Base Address 0x0C20 0000

Bits Field Name Attr. Rst. Description
[2:0] Threshold RW X Sets the priority threshold
[31:3] Reserved WIRI X

Table 8.9: PLIC Interrupt Threshold Registers

8.7 Interrupt Claim Process
The U54-MC Core Complex can perform an interrupt claim by reading the claim/complete regis-
ter (Table 8.10), which returns the ID of the highest priority pending interrupt or zero if there is no
pending interrupt. A successful claim will also atomically clear the corresponding pending bit on
the interrupt source.

The U54-MC Core Complex can perform a claim at any time, even if the MEIP bit in the mip

(Section 7.3.3) register is not set.

The claim operation is not affected by the setting of the priority threshold register.
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8.8 Interrupt Completion
The U54-MC Core Complex signals it has completed executing an interrupt handler by writing
the interrupt ID it received from the claim to the claim/complete register (Table 8.10). The PLIC
does not check whether the completion ID is the same as the last claim ID for that target. If
the completion ID does not match an interrupt source that is currently enabled for the target, the
completion is silently ignored.

PLIC Claim/Complete Register (claim)
Base Address 0x0C20 0004

Bits Field Name Attr. Rst. Description
[31:0] Interrupt Claim RW X A read of zero indicates that no interrupts are

pending. A non-zero read contains the id of
the highest pending interrupt. A write to this
register signals completion of the interrupt id
written

Table 8.10: PLIC Interrupt Claim/Complete Register



Chapter 9

Core Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software
and timer interrupts. The U54-MC Core Complex CLINT complies with The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Version 1.10 [2].

9.1 U54-MC Core Complex CLINT Address Map
Table 9.1 shows the memory map for CLINT on SiFive U54-MC Core Complex.

CLINT Register Map
Address Width Attr. Description Notes

0x0200 0000 4B RW msip for hart 0

MSIP Registers
0x0200 0004 4B RW msip for hart 1
0x0200 0008 4B RW msip for hart 2
0x0200 000C 4B RW msip for hart 3
0x0200 0010 4B RW msip for hart 4
0x0200 0014

. . . Reserved
0x0200 3FFF

0x0200 4000 8B RW mtimecmp for hart 0

Timer compare register
0x0200 4008 8B RW mtimecmp for hart 1
0x0200 4010 8B RW mtimecmp for hart 2
0x0200 4018 8B RW mtimecmp for hart 3
0x0200 4020 8B RW mtimecmp for hart 4
0x0200 4028

. . . Reserved
0x0200 BFF7

0x0200 BFF8 8B RO mtime Timer register
0x0200 C000

. . . Reserved
0x0200 FFFF

Table 9.1: SiFive U54-MC Core Complex CLINT Memory Map.
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9.2 MSIP Registers
Machine-mode software interrupts are generated by writing to the memory-mapped control regis-
ter msip. The msip register is a 32-bit wide WARL register, where the LSB is reflected in the msip

bit of the mip register. Other bits in the msip registers are hardwired to zero. On reset, the msip

registers are cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as
harts may write each other’s msip bits to effect interprocessor interrupts.

9.3 Timer Registers
mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc toggle signal described in Chapter 5. A timer interrupt is pending whenever mtime is greater
than or equal to the value in the mtimecmp register. The timer interrupt is reflected in the mtip bit
of the mip register described in Chapter 7.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

9.4 Supervisor Mode Delegation
By default all interrupts trap to machine mode including timer and software interrupts. In order for
supervisor timer and software interrupts to trap directly to supervisor mode, supervisor timer and
software interrupts must first be delegated to supervisor mode.

Please see Chapter 7 Section 7.4 for more details on supervisor mode interrupts.



Chapter 10

Physical Memory Protection

This chapter describes how physical memory protection concepts in the RISC-V architecture apply
to the U54-MC Core Complex. The definitive resource for information about the RISC-V physical
memory protection is The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Ver-
sion 1.10 [2].

10.1 Functional Description
The U54-MC Core Complex includes a Physical Memory Protection (PMP) unit, which can be
used to restrict access to memory and isolate processes from each other.

The U54-MC Core Complex PMP unit has 8 regions and a minimum granularity of 4 bytes. It
is permitted to have overlapping regions. The U54-MC Core Complex PMP unit implements the
architecturally defined pmpcfg0 CSR, supporting 8 regions. pmpcg1, pmpcfg2 and pmpcfg3 are
implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces permis-
sions on S-mode and U-mode accesses. However, locked regions (see Section 10.2) additionally
enforce their permissions on M-mode.

10.2 Region Locking
The PMP allows for region locking whereby once a region is locked, further writes to the configura-
tion and address registers are ignored. Locked PMP entries may only be unlocked with a system
reset. A region may be locked by setting the L bit in the pmpicfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are en-
forced on M-Mode accesses. When the L bit is set, these permissions are enforced for all privilege
modes. When L bit is clear, the R/W/X permissions apply only to U-mode.

When implementing less than he maximum DTIM RAM, it is necessary to lock one PMP region
encompassing the unimplemented address space with no R/W/X permissions. Doing so will force
all access to the unimplemented address space to generate an exception.

For example, if one only implemented 32 KiB of DTIM RAM, then setting pmp0cfg=0x98 and
pmpaddr0=0x2000 0FFF will disable access to the unimplemented 32 KiB region above.
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Chapter 11

Level 2 Cache Controller

This chapter will describe the functionality of the Level 2 Cache Controller used in the U54-MC
Core Complex.

11.1 Level 2 Cache Controller Overview
The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for mas-
ters in a Core Complex. The Level 2 Cache Controller also acts as directory-based coherency
manager.

The SiFive Level 2 Cache Controller offers extensive flexibility as it allows for programmatically
enabling cache ways, way masking per master, ECC support with error tracking statistics, error
injection, and interrupt signaling capabilities.

All of these features are described in Section 11.2.

11.2 Functional Description
The U54-MC Core Complex L2 Cache Controller is configured into 4 banks where each bank
contains 512 sets of 16 ways and each way containing a 64 Byte block. This subdivision into
banks helps facilitate increased available bandwidth between CPU masters and the L2 Cache as
each bank has its own 128-bit TL-C inner port. As such, multiple requests to different banks may
proceed in parallel.

The outer port of the L2 Cache Controller is a 128-bit TL-C port shared amongst all banks and
typically connected to a DDR controller. This port is described in Chapter 5.

11.2.1 Error Correcting Codes (ECC)
The SiFive Level 2 Cache Controller supports ECC allowing for correction of single bit errors, and
detection of double bit errors (SECDEC) on L2 data. The Cache Controller also has ECC for
meta-data information (index and tag information) where it can correct a single bit error.

Whenever a correctable error is detected, the caches immediately repair the corrupted bit and
write it back to SRAM. This corrective procedure is completely invisible to application software.
However, to support diagnostics, the cache records the address of the most recently corrected
meta-data and data errors. Whenever a new error is corrected, a counter is increased and an
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interrupt is raised. There are independent addresses, counters, and interrupts for correctable
meta-data and data errors.

DirError, DataError, DataFail signals are used to indicate that an L2 meta-data, data, or un-
correctable L2 data error error has occurred respectively. These signals are connected to the PLIC
as described in Chapter 8 and are cleared upon reading their respective count registers.

11.2.2 Way Enable and Masking
Similar to the ITIM discussed in Chapter 3, the SiFive Level 2 Cache Controller allows for its
SRAMs to act either as direct addressed memory in the RISC-V Core IP address space, or as a
cache which is controlled by the L2 Cache Controller and can contain a copy of any cacheable
address.

When cache ways are disabled, they are addressable in the L2-LIM (L2 Loosely Integrated Mem-
ory) address space as described in the U54-MC Core Complex memory map in Chapter 6. Fetch-
ing instructions or data from the L2-LIM provides deterministic behavior equivalent to an L2 cache
hit, with no possibility of a cache miss. Accesses to L2-LIM are always given priority over cache
way accesses which target the same L2 cache bank.

Out of reset all ways, except for way 0, are disabled. Cache ways can be enabled by writing to
the WayEnable register described in Section 11.4.2. Once a cache way is enabled, it can not be
disabled unless the RISC-V Core IP is reset.

Additionally, it is possible to restrict the amount of cache memory a CPU master is able use by
using the WayMaskX register described in Section 11.4.11.

11.3 Memory Map
The L2 Cache Controller memory map is shown in Table 11.1.
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Level 2 Cache Controller Memory Map
Offset Width Attr. Description Notes
0x000 4B RO Config Information on the configuration

of the L2 Cache
0x008 1B RW WayEnable Way enable register
0x040 4B WO ECCInjectError ECC error injection Register
0x100 8B RO ECCDirFixAddr Address of most recently cor-

rected meta-data error
0x108 4B RO ECCDirFixCount Count of corrected meta-data

errors
0x140 8B RO ECCDataFixAddr Address of most recently cor-

rected data error
0x148 4B RO ECCDataFixCount Count of corrected data errors
0x160 8B RO ECCDataFailAddr Address of most recent uncor-

rectable data error
0x168 4B RO ECCDataFailCount Count of uncorrectable data er-

rors
0x200 8B WO Flush64 Flush cache block, 64-bit ad-

dress
0x240 4B WO Flush32 Flush cache block, 32-bit ad-

dress
0x800 8B RW WayMask0 Master 0 way mask register
0x808 8B RW WayMask1 Master 1 way mask register
0x810 8B RW WayMask2 Master 2 way mask register
0x818 8B RW WayMask3 Master 3 way mask register
0x820 8B RW WayMask4 Master 4 way mask register

Table 11.1: Level 2 Cache Controller Memory Map

11.4 Register Descriptions
This section will describe the functionality of the memory mapped registers in the Level 2 Cache
Controller

11.4.1 Cache Configuration Register Config
The Config Register can be used to programmatically determine information regarding the cache
size and organization.
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Cache Configuration Register (Config)
Register Offset 0x000

Bits Field Name Attr. Rst. Description
[7:0] Banks RO 4 Returns the number of banks in the cache

[15:8] Ways RO 16 Returns the number of ways in the cache
[23:16] Sets RO 9 Returns the Base-2 logarithm of the number

of sets in a cache bank
[31:24] Bytes RO 6 Returns the Base-2 logarithm of the number

of bytes in cache blocks
Table 11.2: Cache Configuration Register

11.4.2 Way Enable Register WayEnable
The WayEnable register determines which ways of the Level 2 Cache Controller are enabled as
Cache. Cache ways which are not enabled, are mapped into the U54-MC Core Complex’s L2-LIM
(Loosely Integrated Memory) as described in the memory map in Chapter 6.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,
only a single L2 cache way is enabled as one cache way must always remain enabled. Once a
cache way is enabled, the only way to map it back into the L2-LIM address space is by a reset.

Way Enable Register (WayEnable)
Register Offset 0x008

Bits Field Name Attr. Rst. Description
[7:0] Way Enable RW 0 Way indexes less than or equal to this register

value may be used by the cache
[63:8] Reserved RW

Table 11.3: Way Enable Register

11.4.3 ECC Error Injection Register ECCInjectError
The ECCInjectError register can be used to insert a an ECC error into either the backing data
or meta-data SRAM. This function can be used to test error correction logic, measurement, and
recovery.
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ECC Error Injection Register (ECCInjectError)
Register Offset 0x040

Bits Field Name Attr. Rst. Description
[7:0] Bit Position RW 0 Specifies a bit position to toggle, within an

SRAM. The SRAM width depends on the mi-
croarchitecture, but is typically 72 bits for data
SRAMs and ≈ 24 bits for Directory SRAM

[15:8] Reserved RW
16 Target RW 0 Setting this bit means the error injection will

target the meta-data SRAMs, otherwise the
error injection will target the data SRAMs

[31:17] Reserved RW
Table 11.4: ECC Error Injection Register

11.4.4 ECC Directory Fix Address ECCDirFixAddr

The ECCDirFixAddr register is a Read Only register which contains the address of the most
recently corrected meta-data error. This field only supplys the portions of the address which
corrspond to the affected set and bank, since all ways are corrected together.

11.4.5 ECC Directory Fix Count ECCDirFixCount
The ECCDirFixCount register is a Read Only register which contains the number of corrected L2
meta-data errors.

Reading this register clears the DirError interrupt signal described in Section 11.2.1.

11.4.6 ECC Data Fix Address ECCDataFixAddr

The ECCDataFixAddr register is a Read Only register which contains the address of the most
recently corrected L2 data error.

11.4.7 ECC Data Fix Count ECCDataFixCount
The ECCDataFixCount register is a Read Only register which contains the number of corrected
data errors.

Reading this register clears the DataError interrupt signal described in Section 11.2.1.

11.4.8 ECC Data Fail Address ECCDataFailAddr

The ECCDataFailAddr register is a Read Only register which contains the address of the most
recent un-corrected L2 data error.

11.4.9 ECC Data Fail Count ECCDataFailCount
The ECCDataFailCount register is a Read Only register which contains the number of un-corrected
data errors.

Reading this register clears the DataFail interrupt signal described in Section 11.2.1.
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11.4.10 Cache Flush Registers
The U54-MC Core Complex L2 Cache Controller provides two registers which can be used for
flushing specific cache blocks.

Flush64 is a 64-bit write only register that will flush the cache block containing the address written.
Flush32 is a 32-bit write only register that will flush a cache block containing the written address
left shifted by 4 bytes. In both registers, all bits must be written in a single access for the flush to
take effect.

11.4.11 Way Mask Registers WayMaskX

The WayMaskX register allows a master connected to the L2 Cache Controller to specify which L2
cache ways can be evicted by master ‘X’ as specified in the WayMaskX register. All masters can
still use data previously stored in any of the ways. The mask serves to limit the amount of cache
memory a given master can monopolize for its own use.

At least one cache way must be enabled. It is recommended to set/clear bits in this register using
atomic operations.

Way Mask Register (WayMaskX)
Register Offset 0x800+(8×MasterID)

Bits Field Name Attr. Rst. Description
0 Way0 Enable RW 1 Setting this bit enables L2 Cache Way 0
1 Way1 Enable RW 1 Setting this bit enables L2 Cache Way 1

. . .
15 Way15 Enable RW 1 Setting this bit enables L2 Cache Way 15

[63:16] Reserved RW 1
Table 11.5: Way Mask Register



Chapter 12

Debug

This chapter describes the operation of SiFive debug hardware, which follows the RISC-V Debug
Specification v0p13. Currently only interactive debug and hardware breakpoints are supported.

12.1 Debug CSRs
This section describes the per-hart trace and debug registers (TDRs), which are mapped into the
CSR space as follows:

CSR Name Description Allowed Access Modes
tselect Trace and debug register select D, M
tdata1 First field of selected TDR D, M
tdata2 Second field of selected TDR D, M
tdata3 Third field of selected TDR D, M
dcsr Debug control and status register D
dpc Debug PC D

dscratch Debug scratch register D

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect and
tdata1–3 registers are accessible from either debug mode or machine mode.

12.1.1 Trace and Debug Register Select (tselect)
To support a large and variable number of TDRs for tracing and breakpoints, they are accessed
through one level of indirection where the tselect register selects which bank of three tdata1–3
registers are accessed via the other three addresses.

The tselect register has the format shown below:

The index field is a WARL field that will not hold indices of unimplemented TDRs. Even if index
can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1 must be
inspected to determine whether the TDR exists.

48
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Trace and Debug Select Register
CSR tselect

Bits Field Name Attr. Description
[31:0] index WARL Selection index of trace and debug registers

Table 12.1: U54-MC Core Complex tselect CSR.

12.1.2 Test and Debug Data Registers (tdata1–3)
The tdata1–3 registers are XLEN-bit read/write registers selected from a larger underlying bank
of TDR registers by the tselect register.

Trace and Debug Data Register 1
CSR tdata1

Bits Field Name Attr. Description
[27:0] TDR-Specific Data
[31:28] type RO Type of the trace & debug register selected by

tselect

Table 12.2: U54-MC Core Complex tdata1 CSR.

Trace and Debug Data Registers 2 and 3
CSR tdata2/3

Bits Field Name Attr. Description
[31:0] type TDR-Specific Data

Table 12.3: U54-MC Core Complex tdata2/3 CSRs.

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR
selected by tselect. The currently defined types are shown below:

type Description
0 No such TDR register
1 Reserved
2 Address/Data Match Trigger

≥3 Reserved

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of
the registers, where only debug mode code can access the debug mode view of the TDRs. Any
attempt to read/write the tdata1–3 registers in machine mode when dmode=1 raises an illegal
instruction exception.

12.1.3 Debug Control and Status Register dcsr
This register gives information about debug capabilities and status. Its detailed functionality is
described in the RISC-V Debug Specification 0p13.

12.1.4 Debug PC dpc

When entering Debug Mode, the current PC is copied here. When leaving debug mode, execution
resumes at this PC.
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12.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by the
code in Debug ROM. The debugger may use it as described in the RISC-V Debug Specification
0p13.

12.2 Breakpoints
The U54-MC Core Complex supports 2 hardware breakpoint registers, which can be flexibly
shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-
mation for the selected breakpoint:

TDR CSRs when used as Breakpoints
CSR Name Breakpoint Alias Description
tselect tselect Breakpoint selection index
tdata1 mcontrol Breakpoint Match control
tdata2 maddress Breakpoint Match address
tdata3 N/A Reserved

12.2.1 Breakpoint Match Control Register mcontrol
Each breakpoint control register is a read/write register laid out as follows:

Breakpoint Control Register (mcontrol)
Register Offset CSR

Bits Field Name Attr. Rst. Description
0 R WARL X Address match on LOAD
1 W WARL X Address match on STORE
2 X WARL X Address match on Instruction FETCH
3 U WARL X Address match on User Mode
4 S WARL X Address match on Supervisor Mode
5 H WARL X Address match on Hypervisor Mode
6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type
11 chain WARL 0 Chain adjacent conditions.

[17:12] action WARL 0 Breakpoint action to take. 0 or 1.
18 timing WARL 0 Timing of the breakpoint. Always 0.
19 select WARL 0 Perform match on address or data. Always 0.
20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range
27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2
Table 12.4: Test and Debug Data Register 3

The type field is a four-bit read-only field holding the value 2 to indicate this is a breakpoint con-
taining address match logic.
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The bpaction field is an eight-bit read-write WARL field that specifies the available actions when
the address match is successful. The value 0 generates a breakpoint exception. The value 1
enters debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields and if set, indicate an address match should only be
successful for loads/stores/instruction fetches respectively, and all combinations of implemented
bits must be supported.

The M/H/S/U bits are individual WARL fields and if set, indicate that an address match should only
be successful in the machine/hypervisor/supervisor/user modes respectively, and all combinations
of implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for break-
point address matching. Three different match settings are currently supported: exact, NAPOT,
and arbitrary range. A single breakpoint register supports both exact address matches and
matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size. Break-
point registers can be paired to specify arbitrary exact ranges, with the lower-numbered breakpoint
register giving the byte address at the bottom of the range and the higher-numbered breakpoint
register giving the address one byte above the breakpoint range, and using the chain bit to indicate
both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to encode
the size of the range as follows:

NAPOT Size Encoding
maddress Match type and size

a...aaaaaa Exact 1 byte
a...aaaaa0 2-byte NAPOT range
a...aaaa01 4-byte NAPOT range
a...aaa011 8-byte NAPOT range
a...aa0111 16-byte NAPOT range
a...a01111 32-byte NAPOT range

. . . . . .
a01...1111 231-byte NAPOT range

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range. The
value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range. A
value of 0 indicates that only exact address matches are supported (one byte range). A value of
31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is
encoded in maddress with the 30 least-signicant bits set to 1, bit 30 set to 0, and bit 31 holding the
only address bit considered in the address comparison.

The unary encoding of NAPOT ranges was chosen to reduce the hardware cost of storing and
generating the corresponding address mask value.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with the
chain bit. The first breakpoint can be set to match on an address using action of 2 (greater than
or equal). The second breakpoint can be set to match on address using action of 3 (less than).
Setting then chain bit on the first breakpoint will then cause it prevent the second breakpoint from
firing unless they both match.
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12.2.2 Breakpoint Match Address Register (maddress)
Each breakpoint match address register is an XLEN-bit read/write register used to hold significant
address bits for address matching, and also the unary-encoded address masking information for
NAPOT ranges.

12.2.3 Breakpoint Execution
Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the ad-
dress range. Implementations that support misaligned accesses in hardware must trap if any byte
of an access falls within the matching range.

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode regis-
ters.

Machine-mode breakpoint traps jump to the exception vector with “Breakpoint” set in the mcause

register, and with badaddr holding the instruction or data address that caused the trap.

12.2.4 Sharing breakpoints between debug and machine mode
When debug mode uses a breakpoint register, it is no longer visible to machine-mode (i.e., the
tdrtype will be 0). Usually, the debugger will grab the breakpoints it needs before entering ma-
chine mode, so machine mode will operate with the remaining breakpoint registers.

12.2.5 Sharing breakpoints between debug and machine mode
When debug mode uses a breakpoint register, it is no longer visible to machine-mode (i.e., the
tdrtype will be 0). Usually, the debugger will grab the breakpoints it needs before entering ma-
chine mode, so machine mode will operate with the remaining breakpoint registers.

12.3 Debug Memory Map
This section describes the debug module’s memory map when accessed via the regular system
interconnect. The debug module is only accessible to debug code running in debug mode on a
hart (or via a debug transport module).

12.3.1 Debug RAM & Program Buffer (0x300–0x3FF)
The U54-MC Core Complex has 16 32-bit words of Program Buffer for the debugger to direct a
hart to execute arbitrary RISC-V code. Its location in memory can be determined by executing
aiupc instructions and storing the result into the Program Buffer.

The U54-MC Core Complex has 1 32-bit words of Debug Data RAM. Its location can be determined
by reading the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM
space is used to pass data for the Access Register abstract command described in the RISC-V
Debug Specification. The U54-MC Core Complexsupports only GPR register access when harts
are halted. All other commands must be implemented by executing from the Debug Program
Buffer.

In the U54-MC Core Complex, both the Program Buffer and Debug Data RAM are general purpose
RAM and are mapped contiguously in the RISC-V Core IP’s memory space. Therefore, additional
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data can be passed in the Program Buffer and additional instructions can be stored in the Debug
Data RAM.

Debuggers must not execute program buffer programs which access any Debug Module memory
except defined Program Buffer and Debug Data addresses.

12.3.2 Debug ROM (0x800–0xFFF)
This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.

12.3.3 Debug Flags (0x100 – 0x110, 0x400 – 0x7FF)
The flag registers in the Debug Module are used for the Debug Module to communicate with each
hart. These flags are set and read used by the Debug ROM, and should not be accessed by any
program buffer code. The specific behavior of the flags is not further documented here.

12.3.4 Safe Zero Address
In the U54-MC Core Complex, the Debug Module contains the address 0 in the memory map.
Reads to this address always return 0, and writes to this address have no impact. This property
allows a “safe” location for unprogrammed parts, as the default mtvec location is 0x0.

12.4 Instruction Trace Interface
This section describes the interface between a SiFive core and its trace unit. The trace interface
conveys information about instruction-retirement and exception events.

Table 12.6 lists the fields in a trace packet. The valid signal is 1 if and only if an instruction retires
or traps (either by generating a synchronous exception or taking an interrupt). The remaining fields
in the packet are only defined when valid is 1.

The iaddr field holds the address of the instruction that retired or trapped. If address translation
is enabled, it is a virtual address, else it is a physical address. Virtual addresses narrower than
XLEN bits are sign-extended, and physical addresses narrower than XLEN bits are zero-extended.

The insn field holds the instruction that retired or trapped. For instructions narrower than the
maximum width, e.g., those in the RISC-V C extension, the unused high-order bits are zero-filled.
The length of the instruction can be determined by examining the low-order bits of the instruction,
as described in The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 [1].
The width of the insn field, ILEN, is 32 bits for current implementations.

The priv field indicates the privilege mode at the time of instruction execution. (On an exception,
the next valid trace packet’s priv field gives the privilege mode of the activated trap handler.) The
width of the priv field, PRIVLEN, is 3, and it is encoded as shown in Table 12.5.

The exception field is 0 if this packet corresponds to a retired instruction, or 1 if it corresponds to
an exception or interrupt. In the former case, the cause and interrupt fields are undefined and
the tval field is zero. In the latter case, the fields are set as follows:

• interrupt is 0 for synchronous exceptions and 1 for interrupts.

• cause supplies the exception or interrupt cause, as would be written to the lower CAUSELEN
bits of the mcause CSR. For current implementations, CAUSELEN=log2XLEN.
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Value Description
000 User mode
001 Supervisor mode
011 Machine mode
111 Debug mode

Table 12.5: Encoding of priv field in trace interface. Unspecified values are reserved.

• tval supplies the associated trap value, e.g., the faulting virtual address for address excep-
tions, as would be written to the mtval CSR.

Future optional extensions may define tval to provide ancillary information in cases where it
currently supplies zero.

For cores that can retire N instructions per clock cycle, this interface is replicated N times. Lower-
numbered entries correspond to older instructions. If fewer than N instructions retire, the valid
packets need not be consecutive, i.e., there may be invalid packets between two valid packets. If
one of the instructions is an exception, no younger instruction will be valid.

Name Description
valid Indicates an instruction has retired or trapped.
iaddr[XLEN-1:0] The address of the instruction.
insn[ILEN-1:0] The instruction.
priv[PRIVLEN-1:0] Privilege mode during execution.
exception 0 if the instruction retired; 1 if it trapped.
interrupt 0 if the exception was synchronous; 1 if interrupt.
cause[CAUSELEN-1:0] Exception cause.
tval[XLEN-1:0] Exception data.

Table 12.6: SiFive instruction trace interface fields.
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Debug Interface
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Figure 13.1: Debug Transport Module and Debug Module for HW Debug

The SiFive U54-MC Core Complex includes the JTAG Debug Transport Module described in the
RISC-V Debug Specification v0p13. This enables a single external industry-standard 1149.1 JTAG
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interface to test and debug the system. The JTAG interface can be directly connected off-chip in a
single-chip microcontroller, or can be an embedded JTAG controller for a RISC-V Core IP designed
to be included in a larger SoC.

The Debug Transport Module and Debug Module are depicted in Figure 13.1.

On-chip JTAG connections must be driven (no pullups), with a normal two-state driver for TDO
under the expectation that on-chip mux logic will be used to select between alternate on-chip
JTAG controllers’ TDO outputs. TDO logic changes on the falling edge of TCK.

13.1 JTAG TAPC State Machine
The JTAG controller includes the standard TAPC state machine shown in Figure 13.2.
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Figure 13.2: JTAG TAPC state machine. The state machine is clocked with TCK. All transitions are labelled
with the value on TMS, except for the arc showing asynchronous reset when TRST=0.

13.2 Resetting JTAG logic
The JTAG logic must be asynchrously reset by asserting jtag reset before coreReset is de-
asserted.

Asserting jtag reset resets both the JTAG DTM and Debug Module test logic. Because parts
of the debug logic require synchronous reset, the jtag reset signal is synchronized inside the
U54-MC Core Complex.

During operation the JTAG DTM logic may also be reset without jtag reset by issuing 5 TCK clock
ticks with TMS asserted. This action only resets the JTAG DTM, not the Debug Module.

13.2.1 JTAG Clocking
The JTAG logic always operates in its own clock domain clocked by TCK. The JTAG logic is fully
static and has no minimum clock frequency. The maximum TCK frequency is part-specific.
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13.2.2 JTAG Standard Instructions
The JTAG DTM implements the BYPASS and IDCODE instructions. The Manufacturer ID field of
IDCODE is provided by the RISC-V Core IP integrator, on the jtag mfr id input.

13.3 JTAG Debug Commands
The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the debug
scan register inbetween TDI and TDO.

The debug scan register includes a 2-bit opcode field, a 7-bit debug module address field, and
a 32-bit data field to allow various memory-mapped read/write operations to be specified with a
single scan of the debug scan register.

These are described in the RISC-V Debug Specification v0p13.

13.4 Using Debug Outputs
The Debug logic in SiFive Systems drives two output signals: ndreset and dmactive. These
signals can be used in integration. It is suggested that the indreset signal contribute to the
system reset. It must be synchronized before it contributes back to the RISC-V Core IP’s overall
reset signal. This signal must not contribute to the jtag reset signal. The dmactive signal may
be used to e.g. prevent clock or power gating of the Debug Module logic while debugging is in
progress.
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